当前位置:首页 > 电源 > 数字电源
[导读]内 容1. 简介 3 1.1 AD7606简介 3 1.2 ADSP-21479简介 4 2. AD7606和ADSP-21479配置与连接 5 3. 时序分析 6 4. 测试结果和结论 7 4.1测试结果 7 4.2结论 10 5. DSP参考代码 10 6. 参考文献 12 1. 简介

内  容

1. 简介 3
1.1 AD7606简介 3
1.2 ADSP-21479简介 4
2. AD7606和ADSP-21479配置与连接 5
3. 时序分析 6
4. 测试结果和结论 7
4.1测试结果 7
4.2结论 10
5. DSP参考代码 10
6. 参考文献 12

 

1. 简介
1.1  AD7606简介
 AD7606是16位,8通道同步采样模数数据采集系统。AD7606完全满足电力系统的要求,具有灵活的数字滤波器、2.5V基准电压源、基准电压缓冲以及高速串行和并行接口。它采用5V单电源供电,可以处理±10V和±5V真双极性输入信号、同时所有通道均能以高达200kSPS的吞吐率采样。
 
图1  AD7606的内部原理框图。
 
图2  AD7606的管脚图。
• AVcc 模拟电源,4.75V~5.25V
• Vdrive 逻辑部分电源
• Vdd 模拟输入部分正电压
• Vss 模拟输入部分负电压
• DGND 数字地
• AGND 模拟地

1.2  ADSP-21479简介
ADSP-21479是SIMD (单指令多数据)SHARC家族中的一员,它基于65nm的最新工艺,具有低成本,低功耗的的特点,是一颗集成有大容量片上SRAM和ROM的32/40位浮点DSP。ADSP-21479是性能出色,266MHZ/1596MFLOP:

• 266 MHz/1596FLOPS SIMD SHARC内核,支持32-bit浮点、40-bit浮点以及16/32-bit定点数据类型
• 支持多达5 Mb 片内SRAM
• 支持16位宽SDR、SDRAM存储器接口
• 数字应用接口 DAI,支持多达8个的高速同步串口(SPORT)及SPI串口
• 2个精确时钟发生器
• 20线数字I/O端口
• 3个定时器、UART、I2C兼容接口
• ROM/JTAG安全模式
• 供应196引脚CSP_BGA封装与100引脚LQFP封装产品,适合于工业客户的要求
• 供应商业级、工业级温度与汽车级温度等级产品

 
图3  ADSP-21479的内部原理框图。[!--empirenews.page--]

2. AD7606和ADSP-21479配置与连接
AD7606芯片的供电采用单5V供电,见图4所示:
 
图4。AD7606供电示意图。
AD7606采用硬件配置方式,具体配置如下:
 1) 设置RANGE=0时,模拟输入范围是±5Vref。
2) 设置/PAR /SER/BYTE SEL为高电平,选择使用串行模式。
    3) CONVSTA, CONVSTB ,使用同源激励。
4) 设置REF SELECT=0 ,使用外部参考电压

SHARC ADSP-21479 SRU设置:
 SPORT0_SCLK  DAIP 1
 SPORT0_FS    DAIP 4
SPORT0_DA    DAIP 5
FLAG4     DPI_PIN1 
FLAG5     DPI_PIN2
根据以上配置,ADSP-21479通过SPORT口与AD7606联系的系统示意图如图5所示:
 
图5  采用串行方式时,AD7606与ADSP-21479硬件连接示意图

3. 时序分析
AD7606工作时序如图6,通过DSP的FLAG信号驱动CONVST A/B信号启动转换过程,BUSY标志着工作状态,连接到DSP的中断输入。BUSY为高时表示处于转换状态,转换完毕后高到低的下降沿引起DSP中断,DSP在响应中断通过SPORT0读取8通道ADC转换好的数据。
 
图6  AD7606串行读取数据时序

ADSP-21479 SPORT口的时序如图7所示,在FS信号启动后,数据随着时钟节拍被读取。 我们选择SPORT数据宽度是32位,那么四次FS信号即可读取八个通道的数据。
 
图7  ADSP-21479 SPORT串行数据接收时序[!--empirenews.page--]

4. 测试结果和结论
DSP软件设置50K的采样信号,对8个通道的数据进行同时采样。各模拟通道输入信号分别为:通道5连接1KHz正弦波,其余通道接地。
4.1 测试结果
1) 利用VDSP5.0++ 的plot窗口(VDSP->View->Debug Windows->Plot)观察5通道数据,
1. 通道5提取到1KHz正弦波;

 

 4.2 结论
这种连接方式只使用DSP的一个串行SPORT口即可同时读取8路ADC的数据。但由于8路数据都通过一路数据输出给DSP,而AD7606支持的最高串行时钟频率有限,模数转换还要占用一部分采样周期,因此串行输出的连接下,AD7606不能工作在最高200KSPS采样率下。
根据AD7606数据手册,AD7606的SCLK上限为23.5MHz。FLAG信号驱动CONVST A/B信号,单路串行输出八通道数据。不考虑转换时间最高采样率可达23500000/(16×8)=183.5kHz,由于每个周期数据转换将消耗一定时间,所以实际无法达到此速度。假设采样周期用Tconvst表示,根据AD7606数据手册,模数转换时间为3.45us,所以 Tconvst-3.45us代表采样周期中传输数据的时间。八通道总数据量为128个时钟周期,所以(Tconvst-3)/128近似为每bit数据的时钟周期。由于SCLK最大为23.5MHz,据此可以推算出此模式下最高采样频率:
(Tconvst(max)-3.45)/128 = 1/23.5
Tconvst(max)≈8.89us
即最高采样率为1/ Tconvst(max) = 112KSPS
同理可知,若采用两口同时输出转换数据,即启动2个SPORT分别读取8个通道的数据,实际最高采样率能达到161K SPS。

当AD7606采用并行方式输出到DSP时,即可得到最高200KSPS采样率。
5. DSP参考代码
1. 配置SRU
// This function will setup the SRU Registers
void InitSRU(void)
{
 //Generating Code for connecting : SPORT0_CLK to DAI_PIN1
 SRU (HIGH, PBEN01_I);
 SRU (SPORT0_CLK_O, DAI_PB01_I);

 //Generating Code for connecting : SPORT0_FS to DAI_PIN4
 SRU (HIGH, PBEN04_I);
 SRU (SPORT0_FS_O, DAI_PB04_I);

 //Generating Code for connecting : DAI_PIN5 to SPORT0_DA
 SRU (LOW, PBEN05_I);
 SRU (DAI_PB05_O, SPORT0_DA_I);
 

 //Generating Code for connecting : FLAG4 to DPI_PIN1
 SRU (HIGH, DPI_PBEN01_I);
 SRU (FLAG4_O, DPI_PB01_I);

 //Generating Code for connecting : FLAG5 to DPI_PIN2
 SRU (HIGH, DPI_PBEN02_I);
 SRU (FLAG5_O, DPI_PB02_I);


}
2. IRQ1  BUSY中断服务程序
void AD7606_BUSY_IRQs(int sig_int)
{
 busy++;
 interrupt(SIG_SP0,Count_SPORT0_RX_IRQs);
#ifdef DMA 
 * (volatile int *)SPCTL0 =( SPEN_A | SLEN32 | ICLK | IFS | LAFS |  SDEN_A | FSR  | DITFS| LFS ); 
#endif 
#ifdef CORE
  * (volatile int *) SPCTL0 =( SLEN16 | ICLK | IFS | FSR | LAFS | LFS | DITFS);
  *(volatile int *) SPCTL0 |=SPEN_A ;
#endif
}
3. SPORT初始化程序
void init_sport(){
  * (volatile int *) SPCTL0 = 0;
  * (volatile int *) SPCTL1 = 0;
  * (volatile int *) SPMCTL0 = 0; 
  * (volatile int *) SPMCTL1 = 0; 
SPORT_DMA_setup:
 
  * (volatile int *) IISP0A =(int)rx_buf0a ;
  * (volatile int *) IMSP0A = 1;         
     * (volatile int *) CSP0A = CHNUM;

  //configure the sport   
  /* */
  /* CLKDIV0=[fCCLK(266 MHz)/4xFSCLK(17 MHz)]-1 = 0x0005 */
  /* FSDIV0=[FSCLK(10 MHz)/TFS(2 MHz)]-1 = 31 = 0x001F */
  //13m hz 1m   0x00080003;       
   /* Configure SPORT0 as a reciever (Rx) */
  * (volatile int *) DIV0 = 0x001F0005; 
          

}
4. SPORT 中断程序
void Count_SPORT0_RX_IRQs(int sig_int)
{
 SP0I_counter++; 
#ifdef CORE 
 rx_buf0a[(SP0I_counter-1)*CHNUM]=(short)(*pRXSP0A);
#endif 
 * (volatile int *) SPCTL0 =0;
 finished=1;
#ifdef DMA 
  
   if(SP0I_counter==1024){
  * (volatile int *) IISP0A =(int)rx_buf0a ;
  SP0I_counter=0;
  }
 else 
  * (volatile int *) IISP0A =(int)(rx_buf0a+ (SP0I_counter)*CHNUM);
 * (volatile int *) IMSP0A = 1;         
    * (volatile int *) CSP0A = CHNUM;
     
#endif
 interrupt(SIG_SP0,SIG_IGN);
}


 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在现代社会,电力系统如同支撑经济社会运行的 “主动脉”,其安全稳定运行至关重要。高压并联电容器作为电力系统中的关键设备,对维持电力系统的高效运行发挥着不可或缺的作用。

关键字: 电容器 电力系统 电气设备

在现代电力系统中,安全与稳定是保障生产生活正常运转的基石。然而,电弧光故障如同潜伏在暗处的 “杀手”,时刻威胁着电力系统的安全。智能电弧光保护装置作为应对这一威胁的有力武器,正逐渐成为电力系统稳定运行不可或缺的 “防火墙...

关键字: 电力系统 电弧光 保护装置

电能作为一种重要的能源,其质量的优劣直接关系到电力系统的安全稳定运行以及各类用电设备的正常工作。理想的电能应是频率稳定、电压幅值恒定且波形为正弦波的交流电。然而,在实际的电力系统中,由于各种因素的影响,电能质量往往会出现...

关键字: 电能 电力系统 谐波

工业自动化、医疗电子及精密测试领域,微弱信号的精准采集与处理是系统性能的核心挑战。以24位Σ-Δ ADC为核心的高精度数据转换系统,结合激光修调电阻阵列的微弱信号调节器,通过动态元件匹配(DEM)技术与激光微纳加工工艺的...

关键字: ADC 动态元件匹配

在现代电力系统中,随着电力电子技术的飞速发展,各种非线性用电设备广泛应用,如变频器、整流器、开关电源等。这些设备在运行过程中会向电网注入大量的高次谐波,对电力系统的安全稳定运行、电能质量以及电气设备的正常工作都带来了严重...

关键字: 高次谐波 电力系统 电能质量

2025年7月8日,致力于亚太地区市场的国际领先半导体元器件分销商---大联大控股宣布,其旗下品佳推出基于微芯科技(Microchip)dsPIC33CK256MP506主控MCU的3.3KW双向图腾柱PFC逆变电源方案...

关键字: 电源 MCU ADC

纳祥科技在原来的基础上更新了一款高性能音频I2S 114DB ADC,它能够以高达192kHz的采样率,执行立体声模拟到数字转换,最高支持24位串行值,并具备114dB动态范围,-100dB THD+N,功能可覆盖CS5...

关键字: 纳祥科技 ADC 国产芯片

新款大功率电力保险丝符合 UL 248-14 与 IEC 60127-1 标准,并具备高达 500 V 的额定电压,以满足新一代电力系统多变的需求

关键字: 电力系统 电力保险丝 能源储存系统

最新 DSC 器件配备专用外设,适用于数据中心电源及其他复杂实时系统

关键字: PWM 分辨率 ADC 数字信号控制器

Bourns® PCP300-T414250S 电流变压器具备高磁导率和低能量损耗,为电力系统提供卓越的高频电流检测

关键字: 变压器 电力系统 电能质量分析
关闭