当前位置:首页 > 电源 > 数字电源
[导读]蓝牙规格 Bluetooth SIG降低蓝牙装置功耗最重要的方法,就是发展出EDR Bluetooth。蓝牙无线电元件消耗的电力,取决于运作时间的长短。 v2.0+EDR 蓝牙规格让资料传输速度达到传统蓝牙的3倍(3Mbps 比 1Mbps)

蓝牙规格 

      Bluetooth SIG降低蓝牙装置功耗最重要的方法,就是发展出EDR Bluetooth。蓝牙无线电元件消耗的电力,取决于运作时间的长短。 v2.0+EDR 蓝牙规格让资料传输速度达到传统蓝牙的3倍(3Mbps 比 1Mbps),这代表无线电波的运作时间减少到三分之一,因此消耗的电量也减少至三分之一。

        提高的资料传输率归功于彻底改变资料封包的传输方式。

        标准传输率(1Mbps – 例如像 v1.2 以前的蓝牙版本 ) 封包中含有四个部份 :
            1. 存取码 (Access Code) – 接收装置利用这个存取码来辨识输入端的传输作业
            2. 封包表头 (Header) – 描述封包的种类与长度
            3. 封包内容 (Payload) – 实际传送的资料内容
            4. 跨封包的 Guard Band (Inter-packet Guard Band)–将无线电波转至下个频带

        所有三个传送部份都采用高斯频率偏移调变机制 (Gaussian Frequency Shift Keying, GFSK)来处理射频讯号: 载波频率偏移范围为正负160 kHz,来代表零或一,每个符元(symbol)编码出一个位元。符元传输率为 1 Msps (Mega Symbol Per Second)。存取码、表头、以及Guard Band保护频带等三个部份所需的资源,让最高负载资料率达到 723 kbps。

        Bluetooth EDR 封包仍对存取码与表头采用GFSK调变机制,但对Payload资料则使用以下二种其中之一不同的调变机制: 一种是强制性,提供2倍的资料传输率,能容许较高的噪音; 另一种是选择性调变机制,提供3倍的资料传输率。

        2倍资料传输率采用 π/4 Differential Quadrature Phase Shift 键移或 π/4-DQPSK技术。这种调变机制会改变载波的相位而不是频率。 “Quadrature” 代表每个符元有四个可能的相位,让每个符元中有两个资料位元能进行编码。符元率维持不变; 因此资料传输率提高两倍。

        3倍资料传输率采用的是 8-DPSK (8-Phase Differential Phase Shift Keying),这种机制类似 π/4-DQPSK,但能移至任何8个可能的相位。邻近位置之间缩小的相位差,加上使用 ±π 相位跳变,意谓着 8-DPSK较容易受到干扰,但每个符元能编码3个位元的资料。

        在 EDR规格的成功迈入实际产品阶段后,通过检验的产品于2005年问市,SIG仍继续研究各种新方法来降低耗电量。

CSR BlueCore以低功耗模式及内部时脉进一步降低耗电量

        CSR的BlueCore晶片内建的硬件时脉,能将数字元件与无线电加以区隔;关闭无线电;以及将晶片切换至浅层或深层睡眠模式。藉此提供甚至可超越Bluetooth SIG官方标准的低耗电效能。

低功耗模式以及内部时脉

        BlueCore晶片内的硬件时脉能将数位元件与无线电加以区隔; 关闭无线电; 以及将晶片切换至浅层或深层睡眠模式。

图 1 浅层睡眠模式的耗电量

        在浅层睡眠模式时中,时脉速度从16MHz降低至0.125MHz ,电流从 10mA降低至 2mA (如图1所示)

图 2 深层睡眠模式的时脉结构

        在深层睡眠模式中,主要晶体加上所有其他时脉元件都被关闭,只留下1kHz给振盪器 (Oscillator) 使用(如图2所示)

        在切换至深层睡眠模式时,BlueCore需要 20milliseconds (ms)的无作业空闲时间。在唤醒方面,晶体需要 5ms的时间来重新启动,元件需要约20ms的无作业时间(预测)。BlueCore能透过排程警报,在下一次排定的作业之前唤醒元件,或是由PIO、UART、或USB连结埠传送器的中断,藉以离开深层睡眠模式。

晶片架构

图 3 BlueCore3-ROM CSP 晶片封装

[!--empirenews.page--]

        BlueCore 晶片架构本身扮演一个重要角色,确保功耗的效率以及降低耗电量。图3列出一个BlueCore3-ROM CSP晶片级封装设计,显示BlueCore晶片的典型配置。

        CSR从0.18微米转移至0.13微米制程,发展CSR的第五代BlueCore5元件,对耗电量方面产生显着的影响。随着硅元件尺寸越来越小,晶片中不同元件之间的通信变得更有效率,相同的功能如今仅须小量的电力就能完成。

DSP: 降低功耗与提高效能

        CSR选择在单晶片规格中采用DSP架构,在立体声与单声道耳机市场带来突破性的解决方案。在立体声耳机方面,消费者希望其耳机电池续航力能比得上音乐播放装置的电池续航力。现今的iPod提供相当长的电池续航力(10至15小时),远胜过一般的移动手机,立体声耳机必须达到相近的电池续航力,而且不会过度消耗音乐播放装置或手机的电池电力。
BlueCore多媒体产品采用的DSP,协助CSR让无线耳机能达到10至16小时的续航力(分别是 BlueCore3-MM 与 BlueCore5-MM ),远远超越其他厂商最优秀的产品,这些非DSP解决方案的续航力最高只有5小时。

        为何整合DSP架构能让电池续航力大幅提升? DSP架构的耗电率原本就远低于其他厂商采用ARM处理器开发的装置,再加上DSP在原生模式下就支援各种音乐格式,例如像MP3、WMA、以及AAC。原生支援能力,让产品不必使用低效率且高耗能的编解码器,例如像利用SBC无线技术来传送音乐档案。

        为确保互通性,所有使用蓝牙AV profile的产品必须能与Bluetooth SIG强制压缩编码/解码机制:子频带编码(SBC)技术达到互通运作。虽然这项标准相当实用,但却和目前广受消费者欢迎的音乐储存格式不一致。因此,若耳机仅支援SBC,音乐播放装置或手机就必须执行转码作业,在传送之前先解压缩,然后再压缩一次。执行这项功能不仅影响音乐的品质,转码作业本身就耗用大量的处理器资源,在现今手机使用的一些典型的处理器核心中,会用去80%的处理器频宽。这种耗用大量处理器资源的作业,需要大量的电力,因此对电池续航力造成更多的压力。

        此外在缩小档案方面,SBC的效率也比不上像是MP3等格式,因此需要更高的周期资源才能进行串流传输。这会影响到连结的可靠度,也会耗用更多的电池电力。

        为解决转码衍生的效率低落与耗电量的问题,CSR运用以DSP为基础的BlueCore多媒体元件,开发出专属的蓝牙立体声耳机参考设计方案,结合SBC与MP3格式的编码软件。藉由支援MP3编码功能,就不需再进行转码,传送MP3档案所消耗的电力也比以往来得低。在典型的耳机参考设计方案中 - BlueTunes 1采用 Bluecore3-MM – 在透过标准非EDR频道接收串流SBC音乐时,耗电率不到 95mW (25mA 与 3.7V – 相当于2004年顶级单声道耳机的耗电水准)。这种设计大幅降低传送MP3档案的耗电量,且仍支援EDR功能。

        下表比较了采用DSP的CSR产品与其他同类产品在耗电方面的差异:
 
        运作模式 其他厂商的元件 CSR BlueCore3-MM
        通话 (SCO, HV3, master) ~112mW ~45mW
        串流音乐 (SBC) ~180mW ~95mW
        待机 (唿叫扫瞄) ~3.3mW ~1mW

图 4 BlueCore3-MM 与主要竞争厂商元件的比较

Casual不定时扫瞄

        在不连结至其他装置时,蓝牙无线电会在 "呼叫扫瞄"或待机模式下运作,让无线电波在每1.28秒搜寻其他可连接装置的射频范围,当无线电波扫描到其他装置之后会送出一个辨识器到本地端装置,以便在有需要的时能建立连线。CSR一直运用新技术,来减少呼叫扫瞄模式下所需要执行的活动,因此能进一步降低耗电量。其中一种作法是採取和GSM信号(beacon)间隔相互同步的频率,扫瞄射频波电的范围,利用可用的功率来扫瞄射频范围,手持式装置藉此在GSM网路中建立辨识的机制。这种作法进一步发展出 "条件式扫瞄"机制,让装置能扫瞄射频范围。若没有射频电波活动,就不必进行完整的呼叫扫瞄,装置可一直等到下一次扫瞄周期以再查看附近是否有其他装置。

        对于掌上型装置制造商而言,耗电量永远是主要的考量因素之一。在面临耗电率问题的同时,业者还必须因应消费者对产品效能、功能、互通性、以及连结等方面的持续攀升的需求。蓝牙身为电池供电设备最适合的无线传输技术,应该要能在最低功耗要求下提供强大的功能。因此Bluetooth SIG与各家业者致力改进采用新规格或新系列蓝牙装置的效能。透过采用DSP架构来增进多媒体效能,不仅可进一步降低耗电,亦可提供对不同应用的支援与效能,可作为开发蓝芽产品厂商设计时的参考。
 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

武汉2025年9月9日 /美通社/ -- 7月24日,2025慧聪跨业品牌巡展——湖北•武汉站在武汉中南花园酒店隆重举办!本次巡展由慧聪安防网、慧聪物联网、慧聪音响灯光网、慧聪LED屏网、慧聪教育网联合主办,吸引了安防、...

关键字: AI 希捷 BSP 平板

上海2025年9月9日 /美通社/ -- 9月8日,移远通信宣布,其自研蓝牙协议栈DynaBlue率先通过蓝牙技术联盟(SIG)BQB 6.1标准认证。作为移远深耕短距离通信...

关键字: 蓝牙协议栈 移远通信 COM BSP

上海2025年9月9日 /美通社/ -- 为全面落实党中央、国务院和上海市委、市政府关于加快发展人力资源服务业的决策部署,更好发挥人力资源服务业赋能百业作用,8月29日,以"AI智领 HR智链 静候你来&quo...

关键字: 智能体 AI BSP 人工智能

北京2025年9月8日 /美通社/ -- 近日,易生支付与一汽出行达成合作,为其自主研发的"旗驭车管"车辆运营管理平台提供全流程支付通道及技术支持。此次合作不仅提升了平台对百余家企业客户的运营管理效率...

关键字: 一汽 智能化 BSP SAAS

深圳2025年9月8日 /美通社/ -- 晶泰科技(2228.HK)今日宣布,由其助力智擎生技制药(PharmaEngine, Inc.)发现的新一代PRMT5抑制剂PEP0...

关键字: 泰科 AI MT BSP

规模升级,共探无线技术新趋势

关键字: 蓝牙 UPF测试

上海2025年9月5日 /美通社/ -- 由上海市经济和信息化委员会、上海市发展和改革委员会、上海市商务委员会、上海市教育委员会、上海市科学技术委员会指导,东浩兰生(集团)有限公司主办,东浩兰生会展集团上海工业商务展览有...

关键字: 电子 BSP 芯片 自动驾驶

推进卓越制造,扩大产能并优化布局 苏州2025年9月5日 /美通社/ -- 耐世特汽车系统与苏州工业园区管委会正式签署备忘录,以设立耐世特亚太总部苏州智能制造项目。...

关键字: 智能制造 BSP 汽车系统 线控

慕尼黑和北京2025年9月4日 /美通社/ -- 宝马集团宣布,新世代首款量产车型BMW iX3将于9月5日全球首发,9月8日震撼亮相慕尼黑车展。中国专属版车型也将在年内与大家见面,2026年在国内投产。 宝马集团董事...

关键字: 宝马 慕尼黑 BSP 数字化

北京2025年9月4日 /美通社/ -- 在全球新一轮科技革命与产业变革的澎湃浪潮中,人工智能作为引领创新的核心驱动力,正以前所未有的深度与广度重塑各行业发展格局。体育领域深度融入科技变革浪潮,驶入数字化、智能化转型快车...

关键字: 人工智能 智能体 AI BSP
关闭