当前位置:首页 > 电源 > 数字电源
[导读]在开关电源中,储能元件(变压器、电感和电容)的尺寸随着开关频率的增加成近似线性的减小。因而,高度集成开关电源一般需要高开关频率和快速半导体设备。但是,高开关频率将

在开关电源中,储能元件(变压器、电感和电容)的尺寸随着开关频率的增加成近似线性的减小。因而,高度集成开关电源一般需要高开关频率和快速半导体设备。但是,高开关频率将伴随电压和电流的变化率(dv/dt和di/dt)增加,这将直接影响开关电源的电磁兼容性。与此同时,EMI滤波器的效能会因为高频寄生参数的影响而削弱,导致不能有效地滤出电源回路产生的高频EMI噪声。近年来,随着EMC标准的不断严格,对EMI的考虑也变得非常重要。目前,关于PWM变换器的EMI噪声的理论分析的文章有很多。但是,对于EMI噪声的产生和传导途径并没有比较全面而深入的研究。因而,EMI噪声,尤其是经过旁路电容流向系统地的共模干扰电流很值得我们研究。

本文通过寄生电感和电容来建立变换器电路模型,对共模和差模干扰的基本模型进行了分析。详细讲述了降低PWM变换器EMI的CM和DM滤波器的设计方法。

一、变换器的高频寄生参数模型

图1为基于IGBT的全桥PWM变换器电路。为了简化分析过程,变压器没有在图1中表示出来。为了对EMI滤波器进行预测和计算,必须建立准确的高频模型。其模型具体包括元器件模型、滤波器模型和导线模型。

 

图1PWM变换器电路图

1.元器件模型

图2为完整的IGBT等效电路。由图可知,电路包括了内部和外部导线电感和IGBT集电极与模型金属底座之间的电容。这些电容导致高频漏电流流向连接散热设备的金属底座。散热设备一般是良好接地以确保安全。IGBT设备是通过小的电子绝缘材料安放在金属底座上。为了使温度电阻尽可能小,其绝缘层要尽可能的薄,并且IGBT集电极与模型金属底座之间的旁路电容要尽可能的大。

 

图2IGBT寄生参数等效电路

2.滤波器模型

滤波器效率不仅受滤波器的类型影响,也受滤波器组成阻抗与附近器件阻抗不同的影响。为了提高滤波器效率,本身的阻抗与附近器件阻抗必须有很大的不同。例如,如果滤波器有较小的容性阻抗,较多的高频噪声电流将通过。如果滤波器有较大的感性阻抗则较多的高频噪声电压将被分开。但是,滤波器在高频状态下的阻抗往往不是我们所想象的这样的。

 

图3滤波器寄生参数

有很多寄生参数将对滤波器产生影响,首先讨论电容的寄生参数对滤波器的影响。图3(a)是一个简单的等效电路,电感Llead为电路的导线电感,Rs为等效电阻。图3b是电容阻抗大小的波德图,频率 f0()是电容的自适应频率。当频率从dc逐渐增大时,电容C的阻抗将线性减小-20dB/dec,在f0以上,电感的阻抗将线性增大+20db/dec。因此,如果电容的f0越大,导线电感将越小,则对于固定电容值的电容将有更好的效果。为了提高电容的效能,电容的引脚应尽可能的短。如果将电容值增大不但不能减小EMI,反而增加电路的EMI,其自适应频率是主要的原因。典型的频率如下:电解电容为1KHz,陶瓷电容为100KHz,聚脂薄膜电容为1MHz,塑胶电容为10MHz,聚脂陶瓷电容为100MHz。

电感上的寄生参数对EMI滤波器的影响也是很大的。典型的等效电路如图3(c)所示。Cpara和Rpara 表示电感的寄生电容和等效串联电阻。图3(d)是阻抗大小的波德图。在小于f1时电感表现为电阻性,在f1与f0()表现为感性,大于f0表现为容性。因此可以等出结论,电感f0越大,频率带越宽。类似于电容,寄生电容值越小,电感将有更好的性能。

3.导线模型

导线模型包括支线和母线。支线有导线电感,大约为1uH/m。如果支线较短,其寄生电容可以不用考虑。因此,连结线应该是越短越好。从实验结果可知,当输入输出电缆长度超过5m时,寄生电容将不能忽视。母线经常是用于联结直流电源与两IGBT引脚。其引线电感L一般比较小,但di/dt常常比较大,因此会非常大,这就是导致差模干扰的主要原因。

二、EMI噪声

EMI噪声主要包括两个部分:差模干扰和共模干扰。差模干扰电流一般是由导线流向中性点或者由中性点流向导线,共模干扰电流通常流入电路与保护地之间的寄生电容上[4]。由于输入端一般加有输入差模滤波器,共模EMI一般比差模EMI要大很多。[!--empirenews.page--]

1.差模干扰

高频差模电流一般是由输出的线线电压突变引起的,这些差模电流流过变换器的输出端。一部分经过DC端电容,一部分将被直流电源吸引。同时差模干扰电流也是一个辐射EMI源。其传播途径能通过安装在变换器dc桥附近的差模滤波器来变化。

变换器输出端电流idc由开关状态来决定。假定当支路为感性时,支路电流方向为正方向,电流大小为i1,则差模电流能通过表1描述的三种状态来决定。其它状态的高频电流与这三种状态是一样的。

表1变换器DC端输出电流

 

另外,因为主电路的寄生参数影响将产生高频谐振,同时增大差模电流。而且,PWM开关产生的高谐波虽然大部分通过输出滤波器滤出,但仍有部分存在,因此,差模电流也将在输出端形成。

2.共模干扰

共模干扰是因为输入端与接地系统之间电流形成的。在PWM变换器系统中,因为存在快速的开关转换输出电压和输出端各种与地的旁路电容,共模干扰是主要的干扰。IGBT集电极与金属底座寄生电容Cp,它是由图1中的与地之间的虚线引起的。这些电容将导致高频漏电流流入连接散热片的金属底座。这些散热片因为安全原因一般都良好接地的。IGBT一般是通过薄的绝缘材料安放在金属底座上。为了减小温度电阻,绝缘层通常是尽可能的薄,并且集电极与金属底座的旁路电容要偏大一些。

在单相变换器中,共模电压V1和V2是潜在桥臂中点与直流端点之间。寄生电容为

在开关动作时,共模电压对等效寄生电容进行充放电,因而,dv/dt和共模电流会很大,共模电流的路径由图1的虚线表示。由图可以清楚的看到,共模电流回路面积相比差模电流回路面积要大一些。因此对于辐射EMI相当于一个好的天线。

 

3.电压尖峰

在PWM变换器中,直流电压与电源开关通过母线和需要的输出电压延长线连接。简单的电路如图4所示。例如,图4(a)表示负载电压Vload=Vdc的情况。当开关状态变化时如负载电压为0时,负载电流仅通过图4(c)所示的回路2。当T1关断时,D2完全导通(负载电流因为感性负载而不发生变化)。因为D2处于导通状态,因此在转换时间内,回路1将满足以下表达式

 

L表示回路1的旁路电感,包括引线电感和IGBT内部电感,VT1表示开关T1 的电压。图4不同时间的电流回路 (a) IT1=Iload,(b) 转换时间,(c) IT1=0,(d) 通过T1的电流因而,由上式可知,当T1关断时,回路1的旁路电感将导致较大电压通过T1。共模电压的电压尖峰将因开关关断而产生,即dv/dt将增大,因而共模电流也将增大。

三、传导EMI的抑制

对于普通的PWM变换器,通常采用通用电源滤波器。低频部分(从15KHz到1MHz)包括DM和CM。DM和CM部分均可以通过DM和CM滤波器滤出。高频部分(1MHz以上)是共模干扰,要抑制就很困难。包括共模滤波器在内很多方法被使用来削除共模干扰。图5所示是滤波器的结构,包括输入端的DM和CM滤波器。

 

图5共模和差模干扰滤波器结构

1.DM滤波器的设计

CM滤波器的电感对DM电流一说近似于短路,而且,CM滤波器的漏感对DM的EMI抑制有很大的作用。输入DM滤波器通常用于削弱变换器桥臂直流纹波电流。因为变换器桥臂是谐波源。直流输出电流必须抑制以符合EMC标准。变换桥输出电流包括直流部分和基频与开关频率的谐波部分。直流部分通过差模滤波器不能得到抑制,而谐波部分将得到大大的抑制。图6所示为谐波电流的等效电路。L和C是差模滤波器的等效电感和电容。R是电感L的等效串联电阻(ESR)。Vdc为直流电压,对谐波电流来说是短路的。Ik为变换桥的等效谐波电流源。I1为通过差模滤波器的DM电流。从等效电路可得如下表达式

 

 

[!--empirenews.page--]

图6差模干扰电流等效电路

2.CM滤波器设计

在开关导通的瞬间,共模电流通过寄生的分布电容流向保护地。因为很难计算出共模电流的大小,因此CM滤波器的设计非常的困难。CM电感大小、电容的大小和位置一般通过实验来确定。为了提高系统的高频性能,将使用共模滤波器、RDC缓冲器和屏蔽等办法。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

太阳的光线出现在生活中的每一个地方,人们的生活已经离不开太阳,太阳能不仅为植物生长提供光源,而且也能为人类提供能源,现在的光伏发电就是很大程度上利用了太阳能。据最新一期《美国国家科学院院刊》报道,美国莱斯大学利用廉价塑料...

关键字: 氢燃料 电源技术解析 太阳能海水 淡化系统

在现在的生活中,太阳能产品处处可见,人们用太阳能煮饭,还有太阳能热水器等等,无处不见太阳能产品,当然,最重要的还是太阳能发电,但是目前的技术并不能让人们很好利用太阳能发电。日前,科技部发布了《国家重点研发计划“可再生能源...

关键字: 电池组件 电源技术解析 钙钛矿 协鑫

随着社会的进步,科技的发展,人们对能源的需求越来越大,而现有的能源有限,需要人们不断发展新能源,而太阳能就是一个不错的选择,人们开始大力发展太阳能能发电。武汉大学高等研究院科研人员日前提出新的逐层刮涂技术,该技术不仅使薄...

关键字: 光伏技术 太阳能电池 电源技术解析 新涂膜技术

在科技的发展道路上,离不开能源的助力,特别是再科技飞速发展的今天,而地球上的能源有限,就需要科研人员不断开发新能源,这就再当下最需要研发太阳能的使用。中国要实现在太空中建造一座兆瓦级太阳能发电站,将面临很多前所未有的挑战...

关键字: 太阳能电池 电源技术解析 石墨烯 传统硅片

在科技的发展道路上,离不开能源的助力,特别是再科技飞速发展的今天,而地球上的能源有限,就需要科研人员不断开发新能源,这就再当下最需要研发太阳能的使用。储能电池技术是制约新能源储能产业发展的关键技术之一。光伏电站储能、风电...

关键字: 储能电池技术 电源技术解析 锂离子电池 碳铅电池

太阳的光线出现在生活中的每一个地方,人们的生活已经离不开太阳,太阳能不仅为植物生长提供光源,而且也能为人类提供能源,现在的光伏发电就是很大程度上利用了太阳能。近日,自从进入夏季以来,持续的高温已经“蒸烤”一段时间了。据中...

关键字: 光伏电站 光伏组件 光伏逆变器 电源技术解析

太阳的光线出现在生活中的每一个地方,人们的生活已经离不开太阳,太阳能不仅为植物生长提供光源,而且也能为人类提供能源,现在的光伏发电就是很大程度上利用了太阳能。在太阳能离网系统中,光伏控制器的作用是把光伏组件发出来的电,经...

关键字: 光伏控制器 太阳能 电源技术解析 离网系统

在现在的生活中,太阳能产品处处可见,人们用太阳能煮饭,还有太阳能热水器等等,无处不见太阳能产品,当然,最重要的还是太阳能发电,但是目前的技术并不能让人们很好利用太阳能发电。随着越来越多的分布式光伏电站走进千家万户,电站所...

关键字: 光伏电站 电源技术解析 组串逆变器 分布式光伏电站

太阳的光线出现在生活中的每一个地方,人们的生活已经离不开太阳,太阳能不仅为植物生长提供光源,而且也能为人类提供能源,现在的光伏发电就是很大程度上利用了太阳能。从目前太阳能光伏电站的运行管理工作实际经验看,要保证光伏发电系...

关键字: 光伏电站 电源技术解析 光伏电站运维管理 古瑞瓦特

随着社会的进步,科技的发展,人们对能源的需求越来越大,而现有的能源有限,需要人们不断发展新能源,而太阳能就是一个不错的选择,人们开始大力发展太阳能能发电。有机-无机杂化钙钛矿材料由于具有吸收系数高,激子束缚能低和载流子寿...

关键字: 太阳能电池 电源技术解析 西安 钙钛矿电池
关闭
关闭