当前位置:首页 > 嵌入式 > 嵌入式教程
[导读]基于阈值法在图像分割技术中的应用

图像的研究和应用中,人们往往仅对图像中的某些部分感兴趣,这些部分称为目标或前景(其他部分称为背景),他们一般对应图像中特定的、具有独特性质的区域。为了辨识和分析目标,需要将他们分离提取出来,在此基础上才有可能对目标进一步利用。图像分割就是指把图像分成格局特性的区域并提取出感兴趣目标的技术和过程。这里特性可以是象素的灰度、颜色、纹理等,预先定义的目标可以对应单个区域,也可以对应多个区域。现有的图像分割算法有:阈值分割、边缘检测和区域提取法。本文着重研究基于阈值法的图像分割技术。

1 阈值法图像分割

1.1 阈值法的基本原理

阈值分割法是一种基于区域的图像分割技术,其基本原理是:通过设定不同的特征阈值,把图像象素点分为若干类。常用的特征包括:直接来自原始图像的灰度或彩色特征;由原始灰度或彩色值变换得到的特征。设原始图像为f(x,y),按照一定的准则f(x,y)中找到特征值T,将图像分割为两个部分,分割后的图像为:

若取:b0=0(黑),b1=1(白),即为我们通常所说的图像二值化。

1.2 阈值法图像分割方法分类

全局阈值法指利用全局信息对整幅图像求出最优分割阈值,可以是单阈值,也可以是多阈值;局部阈值法是把原始的整幅图像分为几个小的子图像,再对每个子图像应用全局阈值法分别求出最优分割阈值。其中全局阈值法又可分为基于点的阈值法和基于区域的阈值法。阈值分割法的结果很大程度上依赖于阈值的选择,因此该方法的关键是如何选择合适的阈值。由于局部阈值法中仍要用到全局阈值法,因此本文主要对全局阈值法中基于点的阈值法和基于区域的阈值法分别进行了研究。根据阈值法的原理可以将阈值选取技术分为3大类

(1)基于点的全局阈值方法

 基于点的全局阈值算法与其他几大类方法相比,算法时间复杂度较低,易于实现,适合应用于在线实时图像处理系统。

(2)基于区域的全局阈值方法

对一幅图像而言,不同的区域,比如说目标区域或背景区域,同一区域内的象素,在位置和灰度级上同时具有较强的一致性和相关性。

(3)局部阈值法和多阈值法

局部阈值(动态阈值) 当图像中有如下一些情况:有阴影,照度不均匀,各处的对比度不同,突发噪声,背景灰度变化等,如果只用一个固定的全局阈值对整幅图像进行分割,则由于不能兼顾图像各处的情况而使分割效果受到影响。有一种解决办法就是用与象索位置相关的一组阈值(即阈值使坐标的函数)来对图像各部分分别进行分割。这种与坐标相关的阈值也叫动态阈值,此方法也叫变化阈值法,或自适应阈值法。这类算法的时间复杂性和空间复杂性比较大,但是抗噪能力强,对一些用全局阈值不易分割的图像有较好的效果。

多阈值法很显然,如果图像中含有占据不同灰度级区域的几个目标,则需要使用多个阈值才能将他们分开。其实多域值分割,可以看作单阈值分割的推广。

2 阈值法图像分割的实现

最大类间方差法计算简单、稳定有效,一直广为使用,是一种受到普遍欢迎的阈值选取方法。其基本思路是将直方图在某一阈值处分割成两组,当被分成的两组的方差为最大时,得到阈值。因为方差是灰度分布均匀性的一种量度,方差值越大,说明构成图像的两部分差别越大,当部分目标错分为背景或部分背景错分为目标都会导致两部分差别变小,因此使类间方差最大的分割意味着错分概率最小。

图像的灰度级范围是0,1,2,…,L-1,设灰度级i的象素点个数为mi,图像的象素点的总数为 ,则灰度级i的出现概率pi定义为 。

在Ostu方法中,阈值t把图像的象素分为C0=(0,1,…,t)和C1=(t+1,t+2,…,L-1)两类(分别代表门标与背景)。

即阈值T将图像分成目标,背景两部分,使得两类总方差取得最大值的t,即为最佳分割阈值。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

作者|小白来源| 小白学视觉了解图像分割当我们在做一个图像分类任务时,首先我们会想从图像中捕获感兴趣的区域,然后再将其输入到模型中。让我们尝试一种称为基于聚类的图像分割技术,它会帮助我们在一定程度上提高模型性能,让我们看...

关键字: 图像分割

摘 要 :智能汽车竞赛的赛题难度与工程应用性能在不断提升,赛道元素日益增多且赛道类型逐渐多样,其识别难度随之增大,以赛道边界线斜率、曲率和图像中黑白跳变等信息为依据的传统赛道识别方法已无法适用于复杂的赛道情况。因此,通过...

关键字: 图像分割 特征分析 图像匹配 赛道元素 智能汽车竞赛 赛道识别

摘 要 :图像处理作为计算机视觉技术必不可少的部分,成为众多学者口中的热点及难点。图像分割是把图像分成若干个特定、具有独特性质的区域并提出感兴趣目标的技术和过程,目的是实现通过医学领域的阈值分割方法以有效分割作物与背景。...

关键字: 图像预处理 图像增强 边缘检测 图像分割 识别 阈值分割

前言上一篇文章:基于uFUN开发板的心率计(一)DMA方式获取传感器数据,介绍了如何获取PulseSensor心率传感器的电压值,并对硬件电路进行了计算分析。心率计,重要的是要获取到心率值,本篇文章将介绍一种采样数据处理...

关键字: 心率计 动态阈值

摘 要:主要研究高速公路车检器流量检测数据的筛选方法和修补方法。首先从交通流三参数的关系出发,分析错误数据的种类及原因,提出一种对错误数据的筛选方法;然后分析与修补数据相关性最强的参数集合,制定修补算法对缺失数据进行补修...

关键字: 关键词 流量检测数据 错误数据筛选 修补算法 阈值法

  图像分割是计算计视觉研究中的经典难题,已成为图像理解领域关注的一个热点,   图像分割作为图像技术领域的一个经典难题,自上世纪七十年代以来吸引了众多研究人员的研究热情并为之付出了巨大

关键字: 图像分割

  边缘检测和图像分割的联系:   边缘检测是通过图像的梯度变化将图像中梯度变化明显的地方检测出来,针对的是边缘信息。图像分割是将目标分割出来,针对的是目标对象,边缘检测是空间域图像分割

关键字: 图像分割 边缘检测

  数字图像处理技术是一个跨学科的领域。随着计算机科学技术的不断发展,图像处理和分析逐渐形成了自己的科学体系,新的处理方法层出不穷,尽管其发展历史不长,但却引起各方面人士的广泛关注。首先,视觉是

关键字: 图像分割 数字图像处理

  图像分割至今尚无通用的自身理论。随着各学科许多新理论和新方法的提出,出现了许多与一些特定理论、方法相结合的图像分割方法。   聚类分析   特征空间聚类法进行图像分割是将图像

关键字: 图像分割 图像处理

所谓图像分割指的是根据灰度、颜色、纹理和形状等特征把图像划分成若干互不交迭的区域,并使这些特征在同一区域内呈现出相似性,而在不同区域间呈现出明显的差异性。 1、基于边缘的图像分割方法

关键字: 图像分割 图像处理

嵌入式教程

6897 篇文章

关注

发布文章

编辑精选

技术子站

关闭