当前位置:首页 > 嵌入式 > 嵌入式软件
[导读] 守护进程(Daemon)是运行在后台的一种特殊进程。它独立于控制终端并且周期性地执行某种任务或等待处理某些发生的事件。守护进程是一种很有用的进程。Linux的大多数服务器就

 守护进程(Daemon)是运行在后台的一种特殊进程。它独立于控制终端并且周期性地执行某种任务或等待

处理某些发生的事件。守护进程是一种很有用的进程。

Linux的大多数服务器就是用守护进程实现的。比如,Internet服务器inetd,Web服务器httpd等。

同时,守护进程完成许多系统任务。比如,作业规划进程crond,打印进程lpd等。

守护进程的编程本身并不复杂,复杂的是各种版本的Unix的实现机制不尽相同,

造成不同 Unix环境下守护进程的编程规则并不一致。

需要注意,照搬某些书上的规则(特别是BSD4.3和低版本的System V)到Linux会出现错误的。

下面结合一些前辈的文档和自己的例子说说守护进程的编程。

.基本概念

.进程

.每个进程都有一个父进程

.当子进程终止时,父进程会得到通知并能取得子进程的退出状态。

.进程组

.每个进程也属于一个进程组

.每个进程主都有一个进程组号,该号等于该进程组组长的PID号

.一个进程只能为它自己或子进程设置进程组ID号

.会话期

.对话期(session)是一个或多个进程组的集合。

.setsid()函数可以建立一个对话期:

如果,调用setsid的进程不是一个进程组的组长,此函数创建一个新的会话期。

(1)此进程变成该对话期的首进程

(2)此进程变成一个新进程组的组长进程。

(3)此进程没有控制终端,如果在调用setsid前,该进程有控制终端,那么与该终端的联系被解除。

如果该进程是一个进程组的组长,此函数返回错误。

(4)为了保证这一点,我们先调用fork()然后exit(),此时只有子进程在运行,

子进程继承了父进程的进程组ID,但是进程PID却是新分配的,所以不可能是新会话的进程组的PID。

从而保证了这一点。

if((pid=fork())>0) //parent

exit(0);

else if(pid==0){ //th1 child

setsid(); //th1是成为会话期组长

if(fork() ==0){ //th2不会是会话期组长(变成孤儿进程组)

...

}

}

一. 守护进程及其特性

(1)守护进程最重要的特性是后台运行。在这一点上DOS下的常驻内存程序TSR与之相似。

(2)其次,守护进程必须与其运行前的环境隔离开来。这些环境包括未关闭的文件描述符,控制终端,

会话和进程组,工作目录以及文件创建掩模等。这些环境通常是守护进程从执行它的父进程(特别是shell)

中继承下来的。

(3)最后,守护进程的启动方式有其特殊之处。它可以在Linux系统启动时从启动脚本/etc/rc.d中启动,

可以由作业规划进程crond启动,还可以由用户终端(通常是 shell)执行。

总之,除开这些特殊性以外,守护进程与普通进程基本上没有什么区别。

因此,编写守护进程实际上是把一个普通进程按照上述的守护进程的特性改造成为守护进程。

二. 守护进程的编程要点 (来自UEAP)

前面讲过,不同Unix环境下守护进程的编程规则并不一致。所幸的是守护进程的编程原则其实都一样,

区别在于具体的实现细节不同。这个原则就是要满足守护进程的特性。

同时,Linux是基于Syetem V的SVR4并遵循Posix标准,实现起来与BSD4相比更方便。编程要点如下;

1. 在后台运行。

为避免挂起控制终端将Daemon放入后台执行。方法是在进程中调用fork使父进程终止,

让Daemon在子进程中后台执行。

if(pid=fork())

exit(0); //是父进程,结束父进程,子进程继续

2. 脱离控制终端,登录会话和进程组

进程属于一个进程组,进程组号(GID)就是进程组长的进程号(PID)。登录会话可以包含多个进程组。

这些进程组共享一个控制终端。这个控制终端通常是创建进程的登录终端。

控制终端,登录会话和进程组通常是从父进程继承下来的。

我们的目的就是要摆脱它们,使之不受它们的影响。

方法是在第1点的基础上,调用setsid()使进程成为会话组长:

setsid();

说明:当进程是会话组长时setsid()调用失败。但第一点已经保证进程不是会话组长。

setsid()调用成功后,进程成为新的会话组长和新的进程组长,并与原来的登录会话和进程组脱离。

由于会话过程对控制终端的独占性,进程同时与控制终端脱离。

3. 禁止进程重新打开控制终端

现在,进程已经成为无终端的会话组长。但它可以重新申请打开一个控制终端。

可以通过使进程不再成为会话组长来禁止进程重新打开控制终端:

if(pid=fork())

exit(0); //结束第一子进程,第二子进程继续(第二子进程不再是会话组长)

4. 关闭打开的文件描述符

进程从创建它的父进程那里继承了打开的文件描述符。如不关闭,将会浪费系统资源,

造成进程所在的文件系统无法卸下以及引起无法预料的错误。按如下方法关闭它们:

for(i=0;i 关闭打开的文件描述符close(i);>

5. 改变当前工作目录

进程活动时,其工作目录所在的文件系统不能卸下。一般需要将工作目录改变到根目录。

对于需要转储核心,写运行日志的进程将工作目录改变到特定目录如 /tmpchdir("/")

6. 重设文件创建掩模

进程从创建它的父进程那里继承了文件创建掩模。它可能修改守护进程所创建的文件的存取位。

为防止这一点,将文件创建掩模清除:umask(0);

7. 处理SIGCHLD信号

处理SIGCHLD信号并不是必须的。

但对于某些进程,特别是服务器进程往往在请求到来时生成子进程处理请求。

如果父进程不等待子进程结束,子进程将成为僵尸进程(zombie)从而占用系统资源。

如果父进程等待子进程结束,将增加父进程的负担,影响服务器进程的并发性能。

在Linux下可以简单地将 SIGCHLD信号的操作设为SIG_IGN。

signal(SIGCHLD,SIG_IGN);

这样,内核在子进程结束时不会产生僵尸进程。[!--empirenews.page--]

这一点与BSD4不同,BSD4下必须显式等待子进程结束才能释放僵尸进程。

三. 守护进程实例

守护进程实例包括两部分:主程序test.c和初始化程序init.c。

主程序每隔一分钟向/tmp目录中的日志test.log报告运行状态。

初始化程序中的init_daemon函数负责生成守护进程。读者可以利用init_daemon函数生成自己的守护进程。

1. init.c清单

#include < unistd.h >

#include < signal.h >

#include < sys/param.h >

#include < sys/types.h >

#include < sys/stat.h >

void init_daemon(void)

{

int pid;

int i;

if(pid=fork())

exit(0); //是父进程,结束父进程

else if(pid< 0)

exit(1); //fork失败,退出

//是第一子进程,后台继续执行

setsid(); //第一子进程成为新的会话组长和进程组长

//并与控制终端分离

if(pid=fork())

exit(0); //是第一子进程,结束第一子进程

else if(pid< 0)

exit(1); //fork失败,退出

//是第二子进程,继续

//第二子进程不再是会话组长

for(i=0;i< NOFILE;++i) //关闭打开的文件描述符

close(i);

chdir("/tmp"); //改变工作目录到/tmp

umask(0); //重设文件创建掩模

return;

}

2. test.c清单

#include < stdio.h >

#include < time.h >

void init_daemon(void);//守护进程初始化函数

main()

{

FILE *fp;

time_t t;

init_daemon();//初始化为Daemon

while(1)//每隔一分钟向test.log报告运行状态

{

sleep(60);//睡眠一分钟

if((fp=fopen("test.log","a")) >=0){

t=time(0);

fprintf(fp,"Im here at %sn",asctime(localtime(&t)) );

fclose(fp);

}

}

}

以上程序在RedHat Linux6.0下编译通过。步骤如下:

编译:gcc -g -o test init.c test.c

执行:./test

查看进程:ps -ef

说明:在系统调用库中有一个库函数可以直接使一个进程变成守护进程

#include

int daemon(int nochdir, int noclose);

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

CPU亲和度通过限制进程或线程可以运行的CPU核心集合,使得它们只能在指定的CPU核心上执行。这可以减少CPU缓存的失效次数,提高缓存命中率,从而提升系统性能。

关键字: Linux 嵌入式

一个线程只能属于一个进程,而一个进程可以有多个线程,线程是进程的一部分,就像工人是工厂的一部分。资源是分配给进程的,同一进程的所有线程共享该进程的全部资源,就像工厂里的工人共享工厂的设备和场地。处理机(CPU)则是分给线...

关键字: 进程 线程

DXC内部新成立的Boomi卓越中心(COE),将成为跨行业客户的创新枢纽 DXC与Boomi携手助力客户整合AI智能体,为规模化应用代理式AI做好准备 弗吉尼亚州阿什伯恩2025年8月19日 /美通社/ --名列财...

关键字: 进程 AI BSP 自动化

北京2025年8月13日 /美通社/ -- 近日,搭载兆芯开先KX-7000高性能处理器的希沃华腾新一代计算终端产品应运而生,凭借应用数据互通、轻松批量部署、自有备授课软件等特色,为教学教研等工作的高效开展提供有力支撑和...

关键字: 终端 AI 数字化 通用处理器

在Linux系统性能优化中,内存管理与网络连接处理是两大核心领域。vm.swappiness与net.core.somaxconn作为关键内核参数,直接影响系统在高负载场景下的稳定性与响应速度。本文通过实战案例解析这两个...

关键字: Linux 内存管理

对于LLM,我使用b谷歌Gemini的免费层,所以唯一的成本是n8n托管。在使用了n8n Cloud的免费积分后,我决定将其托管在Railway上(5美元/月)。然而,由于n8n是开源的,您可以在自己的服务器上托管它,而...

关键字: 人工智能 n8n Linux

深圳2025年7月22日 /美通社/ -- 2025年7月16日,荣耀终端股份有限公司(以下简称"荣耀")与中国电信股份有限公司(以下简称&qu...

关键字: 中国电信 终端 荣耀 AI

在Linux系统管理中,权限控制是安全运维的核心。本文通过解析/etc/sudoers文件配置与组策略的深度应用,结合某金融企业生产环境案例(成功拦截98.7%的非法提权尝试),揭示精细化权限管理的关键技术点,包括命令别...

关键字: Linux 用户权限 sudoers文件

Linux内核中的信号量(Semaphore)是一种用于资源管理的同步原语,它允许多个进程或线程对共享资源进行访问控制。信号量的主要作用是限制对共享资源的并发访问数量,从而防止系统过载和数据不一致的问题。

关键字: Linux 嵌入式

在云计算与容器化技术蓬勃发展的今天,Linux网络命名空间(Network Namespace)已成为构建轻量级虚拟网络的核心组件。某头部互联网企业通过命名空间技术将测试环境资源消耗降低75%,故障隔离效率提升90%。本...

关键字: Linux 云计算
关闭