当前位置:首页 > 嵌入式 > 嵌入式软件
[导读]进程是UNIX操作系统抽象概念中最基本的一种,其中涉及进程的定义以及相关的概念,比如线程;它们在内核中如何被列举?如何创建?最终又如何消亡?让我们通过下面的分析,一步步解开内核进程的神秘面纱。

进程是UNIX操作系统抽象概念中最基本的一种,其中涉及进程的定义以及相关的概念,比如线程;它们在内核中如何被列举?如何创建?最终又如何消亡?让我们通过下面的分析,一步步解开内核进程的神秘面纱。

1. 进程和线程

进程和线程是程序运行时状态,是动态变化的,进程和线程的管理操作(比如,创建,销毁等)都是有内核来实现的。

Linux中的进程于Windows相比是很轻量级的,而且不严格区分进程和线程,线程不过是一种特殊的进程。

所以下面只讨论进程,只有当线程与进程存在不一样的地方时才提一下线程。

进程提供2种虚拟机制:虚拟处理器和虚拟内存

每个进程有独立的虚拟处理器和虚拟内存,

每个线程有独立的虚拟处理器,同一个进程内的线程有可能会共享虚拟内存。

内核中进程的信息主要保存在task_struct中(include/linux/sched.h)

进程标识PID和线程标识TID对于同一个进程或线程来说都是相等的。

Linux中可以用ps命令查看所有进程的信息:

ps -eo pid,tid,ppid,comm

2. 进程的生命周期

进程的各个状态之间的转化构成了进程的整个生命周期。

 

 

3. 进程的创建

Linux中创建进程与其他系统有个主要区别,Linux中创建进程分2步:fork()和exec()。

fork: 通过拷贝当前进程创建一个子进程

exec: 读取可执行文件,将其载入到内存中运行

创建的流程:

调用dup_task_struct()为新进程分配内核栈,task_struct等,其中的内容与父进程相同。

check新进程(进程数目是否超出上限等)

清理新进程的信息(比如PID置0等),使之与父进程区别开。

新进程状态置为 TASK_UNINTERRUPTIBLE

更新task_struct的flags成员。

调用alloc_pid()为新进程分配一个有效的PID

根据clone()的参数标志,拷贝或共享相应的信息

做一些扫尾工作并返回新进程指针

创建进程的fork()函数实际上最终是调用clone()函数。

创建线程和进程的步骤一样,只是最终传给clone()函数的参数不同。

比如,通过一个普通的fork来创建进程,相当于:clone(SIGCHLD, 0)

创建一个和父进程共享地址空间,文件系统资源,文件描述符和信号处理程序的进程,即一个线程:clone(CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND, 0)

在内核中创建的内核线程与普通的进程之间还有个主要区别在于:内核线程没有独立的地址空间,它们只能在内核空间运行。

这与之前提到的Linux内核是个单内核有关。

4. 进程的终止

和创建进程一样,终结一个进程同样有很多步骤:

子进程上的操作(do_exit)

设置task_struct中的标识成员设置为PF_EXITING

调用del_timer_sync()删除内核定时器, 确保没有定时器在排队和运行

调用exit_mm()释放进程占用的mm_struct

调用sem__exit(),使进程离开等待IPC信号的队列

调用exit_files()和exit_fs(),释放进程占用的文件描述符和文件系统资源

把task_struct的exit_code设置为进程的返回值

调用exit_notify()向父进程发送信号,并把自己的状态设为EXIT_ZOMBIE

切换到新进程继续执行

子进程进入EXIT_ZOMBIE之后,虽然永远不会被调度,关联的资源也释放掉了,但是它本身占用的内存还没有释放,

比如创建时分配的内核栈,task_struct结构等。这些由父进程来释放。

父进程上的操作(release_task)

父进程受到子进程发送的exit_notify()信号后,将该子进程的进程描述符和所有进程独享的资源全部删除。

从上面的步骤可以看出,必须要确保每个子进程都有父进程,如果父进程在子进程结束之前就已经结束了会怎么样呢?

子进程在调用exit_notify()时已经考虑到了这点。如果子进程的父进程已经退出了,那么子进程在退出时,exit_notify()函数会先调用forget_original_parent(),然后再调用find_new_reaper()来寻找新的父进程。

find_new_reaper()函数先在当前线程组中找一个线程作为父亲,如果找不到,就让init做父进程。(init进程是在linux启动时就一直存在的)

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

CPU亲和度通过限制进程或线程可以运行的CPU核心集合,使得它们只能在指定的CPU核心上执行。这可以减少CPU缓存的失效次数,提高缓存命中率,从而提升系统性能。

关键字: Linux 嵌入式

在Linux系统性能优化中,内存管理与网络连接处理是两大核心领域。vm.swappiness与net.core.somaxconn作为关键内核参数,直接影响系统在高负载场景下的稳定性与响应速度。本文通过实战案例解析这两个...

关键字: Linux 内存管理

对于LLM,我使用b谷歌Gemini的免费层,所以唯一的成本是n8n托管。在使用了n8n Cloud的免费积分后,我决定将其托管在Railway上(5美元/月)。然而,由于n8n是开源的,您可以在自己的服务器上托管它,而...

关键字: 人工智能 n8n Linux

在Linux系统管理中,权限控制是安全运维的核心。本文通过解析/etc/sudoers文件配置与组策略的深度应用,结合某金融企业生产环境案例(成功拦截98.7%的非法提权尝试),揭示精细化权限管理的关键技术点,包括命令别...

关键字: Linux 用户权限 sudoers文件

Linux内核中的信号量(Semaphore)是一种用于资源管理的同步原语,它允许多个进程或线程对共享资源进行访问控制。信号量的主要作用是限制对共享资源的并发访问数量,从而防止系统过载和数据不一致的问题。

关键字: Linux 嵌入式

在云计算与容器化技术蓬勃发展的今天,Linux网络命名空间(Network Namespace)已成为构建轻量级虚拟网络的核心组件。某头部互联网企业通过命名空间技术将测试环境资源消耗降低75%,故障隔离效率提升90%。本...

关键字: Linux 云计算

在Linux内核4.18+和主流发行版(RHEL 8/Ubuntu 20.04+)全面转向nftables的背景下,某电商平台通过迁移将防火墙规则处理效率提升40%,延迟降低65%。本文基于真实生产环境案例,详解从ipt...

关键字: nftables Linux

在Linux设备驱动开发中,等待队列(Wait Queue)是实现进程睡眠与唤醒的核心机制,它允许进程在资源不可用时主动放弃CPU,进入可中断睡眠状态,待资源就绪后再被唤醒。本文通过C语言模型解析等待队列的实现原理,结合...

关键字: 驱动开发 C语言 Linux

在Unix/Linux进程间通信中,管道(pipe)因其简单高效被广泛使用,但默认的半双工特性和无同步机制容易导致数据竞争。本文通过父子进程双向通信案例,深入分析互斥锁与状态机在管道同步中的应用,实现100%可靠的数据传...

关键字: 管道通信 父子进程 Linux

RTOS :RTOS的核心优势在于其实时性。它采用抢占式调度策略,确保高优先级任务能够立即获得CPU资源,从而在最短时间内完成处理。RTOS的实时性是通过严格的时间管理和任务调度算法实现的,能够满足对时间敏感性要求极高的...

关键字: Linux RTOS
关闭