当前位置:首页 > > 充电吧
[导读]C++ —— C++程序编译的四个过程        g++是Linux下C++的编译器;我为什么会选择Linux下的g++编译器,就是因为g++可以看到程序从编译到运行的过程做了些什么。而VS等集成

C++ —— C++程序编译的四个过程

 

       g++是Linux下C++的编译器;我为什么会选择Linux下的g++编译器,就是因为g++可以看到程序从编译到运行的过程做了些什么。而VS等集成开发环境看不到这些,并不是说VS工具不好,(VS还是相当好用的...)。对于学习来说,需要知道程序从编译到运行进行了哪些工作,做了哪些事情,首推g++编译器(这个看个人习惯)。

一、常见文件后缀

       .c为后缀的文件:c语言源代码文件

       .a为后缀的文件:是由目标文件构成的库文件

       .C,.cc为后缀的文件:是c++源代码文件

       .h为后缀的文件:头文件

       o为后缀的文件:是编译后的目标文件

       .s为后缀的文件:是汇编语言源代码文件

       .m为后缀的文件:Objective-C原始程序

       .so为后缀的文件:编译后的动态库文件

 

二、g++执行的四个过程

1、预处理:条件编译,头文件包含,宏替换的处理,生成.i文件。

2、编译:将预处理后的文件转换成汇编语言,生成.s文件

3、汇编:汇编变为目标代码(机器代码)生成.o的文件

4、链接:连接目标代码,生成可执行程序

 

三、最简单的C++程序——"helloworld!n"


// 新建hello.cpp文件,vim编辑
#includeusing namespace std;
 
int main(void)
{
    count << "hello world!"<< endl;
 
    reutrn 0;
}


(1)预处理阶段


g++ -E hello.cpp > hello.i


       通过vim打开hello.i文件,你会发现一些情况(最好是自己观察,看看哪些内容被换了);

       宏的替换,还有注释的消除,还有找到相关的库文件,将#include文件的全部内容插入。若用<>括起文件则在系统的INCLUDE目录中寻找文件,若用""括起文件则在当前目录中寻找文件。

       用编辑器打开hello.i会发现有很多很多代码,你只需要看最后部分就会发现,预处理做了宏的替换,还有注释的消除,可以理解为无关代码的清除。

(2)编译


g++ -S hello.cpp


       生成hello.s文件,.s文件表示是汇编文件,用编辑器打开就都是汇编指令。(可以通过vim编辑器看看hello.s里面的内容【都是汇编指令,哈哈】)。

(3)汇编


g++ -c hello.cpp


       汇编变为目标代码(机器代码)生成.o的文件,.o是gcc生成的目标文件,用编辑器打开就都是二进制机器码。

(4)链接 ——链接生成可执行文件(库文件进行链接)


g++ -o hello hello.cpp


程序运行:./hello【输出hello world!】

 

         在成功编译之后,就进入了链接阶段。在这里涉及到一个重要的概念:函数库(可以这么理解就是不带main()函数的.cpp生成的)。

       可以重新查看这个小程序,在这个程序中并没有定义”cout”的函数(准确说cout不是函数,cout却很独特:既不是函数,似乎也不是C++特别规定出来的像if,for一类有特殊语法的“语句”,其实说到底还是函数调用,不过这函数有些特殊,用的是运算符重载,确切地说是重载了“<<”运算符。这里如果用pritf()函数说明会更好,暂且当做函数理解吧)实现,且在预编译中包含进的”iostream”中也只有该函数的声明,而没有定义函数的实现,那么,是在哪里实现”cout”函数的呢?系统把这些函数实现都被做到名为stdc++的库文件中去了,在没有特别指定时,g++会到系统默认的搜索路径”/usr/lib”下进行查找,也就是链接到stdc++库函数中去,这样就能实现函数”cout”了,而这也就是链接的作用。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

CPU亲和度通过限制进程或线程可以运行的CPU核心集合,使得它们只能在指定的CPU核心上执行。这可以减少CPU缓存的失效次数,提高缓存命中率,从而提升系统性能。

关键字: Linux 嵌入式

在Linux系统性能优化中,内存管理与网络连接处理是两大核心领域。vm.swappiness与net.core.somaxconn作为关键内核参数,直接影响系统在高负载场景下的稳定性与响应速度。本文通过实战案例解析这两个...

关键字: Linux 内存管理

对于LLM,我使用b谷歌Gemini的免费层,所以唯一的成本是n8n托管。在使用了n8n Cloud的免费积分后,我决定将其托管在Railway上(5美元/月)。然而,由于n8n是开源的,您可以在自己的服务器上托管它,而...

关键字: 人工智能 n8n Linux

在Linux系统管理中,权限控制是安全运维的核心。本文通过解析/etc/sudoers文件配置与组策略的深度应用,结合某金融企业生产环境案例(成功拦截98.7%的非法提权尝试),揭示精细化权限管理的关键技术点,包括命令别...

关键字: Linux 用户权限 sudoers文件

Linux内核中的信号量(Semaphore)是一种用于资源管理的同步原语,它允许多个进程或线程对共享资源进行访问控制。信号量的主要作用是限制对共享资源的并发访问数量,从而防止系统过载和数据不一致的问题。

关键字: Linux 嵌入式

在云计算与容器化技术蓬勃发展的今天,Linux网络命名空间(Network Namespace)已成为构建轻量级虚拟网络的核心组件。某头部互联网企业通过命名空间技术将测试环境资源消耗降低75%,故障隔离效率提升90%。本...

关键字: Linux 云计算

在Linux内核4.18+和主流发行版(RHEL 8/Ubuntu 20.04+)全面转向nftables的背景下,某电商平台通过迁移将防火墙规则处理效率提升40%,延迟降低65%。本文基于真实生产环境案例,详解从ipt...

关键字: nftables Linux

在Linux设备驱动开发中,等待队列(Wait Queue)是实现进程睡眠与唤醒的核心机制,它允许进程在资源不可用时主动放弃CPU,进入可中断睡眠状态,待资源就绪后再被唤醒。本文通过C语言模型解析等待队列的实现原理,结合...

关键字: 驱动开发 C语言 Linux

在Unix/Linux进程间通信中,管道(pipe)因其简单高效被广泛使用,但默认的半双工特性和无同步机制容易导致数据竞争。本文通过父子进程双向通信案例,深入分析互斥锁与状态机在管道同步中的应用,实现100%可靠的数据传...

关键字: 管道通信 父子进程 Linux

RTOS :RTOS的核心优势在于其实时性。它采用抢占式调度策略,确保高优先级任务能够立即获得CPU资源,从而在最短时间内完成处理。RTOS的实时性是通过严格的时间管理和任务调度算法实现的,能够满足对时间敏感性要求极高的...

关键字: Linux RTOS
关闭