当前位置:首页 > 电源 > 电源
[导读]变压器的一次和二次绕组的极性相反,这大概也是Flyback名字的由来:a.当开关管导通时,变压器原边电感电流开始上升,此时由于次级同名端的关系,输出二极管截止,变压器储存能量,负载由输出电容提供能量。

以后会不断分享实战经验。包括:开关电源、整流器、逆变器、单片机、晶体管、PWM电路、反馈电路、变压器设计、储能、BMS原理、传感器、电路原理图设计、PCB电路板的设计等,360°无死角、全方位为大家剖析:BUCK(降压)、BOOST(升压)、Flyback(反激)、QR-Flyback(准谐振)、APFC(有源功率因数校正)、LLC(谐振半桥)、PSFB(移相全桥)、BMS(电池管理系统)、单片机(包括C51、STM32系列)都是已经大批量生产的资料、而且现在正热卖的产品原理图、PCB等,帮助广大电子爱好者实现高薪就业。

一.我们先来认识一下反激变换器

1.反激基本电路:

2.工作原理:

变压器的一次和二次绕组的极性相反,这大概也是Flyback名字的由来:a.当开关管导通时,变压器原边电感电流开始上升,此时由于次级同名端的关系,输出二极管截止,变压器储存能量,负载由输出电容提供能量。b.当开关管截止时,变压器原边电感感应电压反向,此时输出二极管导通,变压器中的能量经由输出二极管向负载供电,同时对电容充电,补充刚刚损失的能量。

3.反激电路的演变:

可以看作是隔离的Buck/Boost电路:

4.在反激电路中,输出变压器T除了实现电隔离和电压匹配之外,还有储存能量的作用,前者是变压器的属性,后者是电感的属性,因此有人称其为电感变压器,有时我也叫他异步电感。二.Flyback的工作模式:1.DCM(discontinuous current mode)&CCM(continuous current mode)根据次级电流是否有降到零,反激可以分为DCM和CCM两种工作模式。两种模式有其各自的特点。下面两种工作模式时的波形(理想波形)。

反激变换器工作在CCM下的各个波形

反激变换器工作在DCM下的各个波形

3.工作模式:

1)电压电流波形2)用电感变压器模型来标示工作工作过程;也可以原副边分开讨论,用电压源来代替中间的转换。

4.波形震荡的来源:

1)开关管关断时的震荡来源于漏感;

2)断续时的震荡,主要原边电感了,因没有了反射电压嵌位。我们可以把反射电压当作一个电压源.

5.实际不理想时开关管所承受的电压是什么样的那?

a.(1)开关管电压分为几部分:

Vds=VDC+VRo(N*Vo)+Vlk

b.(2)VDC没有什么好解释的;VRo是因原边开关管关断副边二极管导通,输出电压通过变压器反映到原边的电压(N*Vo);除了变压器制约住的电压还有制约不住的漏感电压Vlk,既然是漏感电压,当然和变压器的漏感有关系了。这个电压是我们讨厌的!

c.(3)如果来限制漏感电压那?RCD吸收钳位电路,利用电容吸收,靠二极管钳位,通过电阻把漏感能量消耗掉。设计的原则是让RCD能够消耗掉漏感能量,发挥该有的作用,但又不能过猛成为原边一个吃激磁电感能量负载。

PSR反激开关电源同步整流问题解析

本文将详细解析PSR反激开关电源同步整流是怎样实现的,希望对大家有所帮助。

大家都知道同步整流相比功率二极管整流损耗小,效率高,相同功率下电源尺寸可以更小。同步整流的驱动方式有电压型驱动和电流型驱动两种。按照SR门级驱动电压的来源,又分为自驱动和外驱动。

这里要介绍的是在充电器领域内常见的电压型其驱动的同步整流 ,知识点包含以下几个小节,结合芯片内部结构力求全面讲细讲清楚以及设计过程中遇到的一些坑,不过还不知道何为PSR架构的童鞋可以先自行了解一下,本章先不展开来讲了。

知识点:

1.同步整流MOS什么时候开通?什么时候该关断?

2.整流芯片是怎么辨别原边导通的波形和RING的?它的逻辑是怎样?靠电路是怎么实现的?

3.除了同步整流功能外,它还可以用来监控次级侧电压,犹如SSR里面的TL341,可以使其动态响应远远优于普通的PSR架构

一、反激式转换器设计组件

反激式转换器的制作方法 ,下面为反激式转换器常用的组件:

反激式变压器开关整流器滤波器驱动开关控制装置反激式转换器是一种组件相对较少的开关转换器,相对容易制造和设计。

反激式转换器是一种隔离开关转换器,可以是降压或者升压配置。大多数手机、平板电脑和笔记本电脑都会用到反激式转换器。

1、反激式变压器

变压器可以将能量从初级传输到次级。另一方面,反激式变压器会将能量储存在初级磁场上,并在一定时间后将能量传递到次级磁场。

变压器至少由2个电感组成,称为次级线圈和初级线圈,缠绕在线圈架中,中间有一个铁芯。磁芯决定磁通密度,磁通密度是将电能从一个绕组传输到另一个绕组的重要参数。压器定相,初级和次级绕组中显示的点。

2、开关

开关的作用是导通和关闭初级电路,使变压器充磁和消磁。该开关由来自所选控制器PMW信号控制。

3、整流器和滤波器

整流器将次级绕组上的电压整流成脉动直流电。整流器或者二极管的另一个作用是从次级绕组切断和连接负载。整流后的电压随后被电容滤除以增加直流电平,并可供预期应用使用。

在上面电路图中没有缓冲电路,但其实大部分时候,反激式转换器需要一个缓冲器来对抗开关或二极管上的电压尖峰。

二、反激式转换器原理

1、开关导通时反激式转换器的工作原理

1)反激式转换器原理图-开关导通时

当开关打开时,电流将从Uin流向初级地为初级绕组充电并且储存能量。这个时候,二极管反向偏置,次级绕组没有电流流动。负载需求由输出电容(Cout)提供。

反激式转换原理图(开关导通)

2)反激式转换器电流变化-开关导通时

反激式转换器电流变化(开关导通)

3)反激式转换器工作原理-开关导通时

反激式转换器原理图(开关导通)

当开关打开时,初级将充电并且有电流流动。根据KVL,

Vin – VL – Vs = 0

假设理想状态,开关压降(Us)为0,

Vin – VL = 0

VL=输入电压

VL = Lp di / dt

di = ( VL / Lp ) X dt

VL = Vin,所以

di = (Vin / Lp) X dt

反激式转换器(Flyback Converter)的设计类似于70年前的开关模式电源,可以执行任何类型的转换,例如AC-DC和DC-DC。反激式的设计为最早在1930年代至1940年代开发用于通信的电视提供了优势。

反激式转换器使用的是非线性开关电源概念,与非反激式设计相比,反激式转换器存储磁能并充当电感器。本文简单介绍下反激式转换器工作原理和电路类型。

基本概念

反激式转换器也称之为电源转换器,它将交流电转换为直流电,并在输入和输出之间进行电流隔离。它在电流流过电路时储存能量,并在断电时释放能量。它使用了一个相互耦合的电感器,并用作降压或升压变压器的隔离开关转换器。

反激式转换器可以控制和调节具有宽输入电压范围的多个输出电压。与其他开关模式电源电路相比,设计反激式转换器所需的组件很少。反激这个词被称为设计中使用的开关的“开/关”动作。

结构设计

反激式转换器设计非常简单,包含反激式变压器、开关、整流器、滤波器等电气元件,以及驱动开关和实现调节的控制装置。其电路设计如下图所示:


隔离的Buck/Boost电路设计详解

开关用于接通和关断初级电路,可以使变压器磁化或退磁。来自控制器的PWM信号控制开关的操作。在大多数反激变压器设计中,FET、MOSFET或基本晶体管用作开关。

整流器对次级绕组的电压进行整流以获得脉动直流输出,并将负载与变压器的次级绕组断开。电容器过滤整流器输出电压并根据所需应用增加直流输出电平。

反激变压器用作存储磁能的电感器,它被设计为一个双耦合电感器,用作初级和次级绕组,并且以接近50KHz的高频率工作。

关系式推导

有必要考虑匝数比、占空比以及初级和次级绕组电流的反激转换器关系式计算。因为匝数比可能会影响流经初级和次级绕组的电流以及占空比。当匝数比高时,占空比也变高,通过初级和次级绕组的电流减小。

由于电路中使用的变压器是定制类型,因此目前不可能获得具有匝数比的完美变压器。所以,通过选择具有所需额定值且更接近所需额定值的变压器,可以补偿电压和输出的差异。

此外,还应该考虑其它参数,例核心材料、气隙的影响和极化。下面讨论通过考虑开关位置的反激式转换器关系式计算。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭