当前位置:首页 > EDA > 电子设计自动化
[导读]UPS的应用场景日趋多样化,每个场景都有其独特的需求,对应不同的方案。本文将聚焦UPS设计方案展开讲述。

UPS的应用场景日趋多样化,每个场景都有其独特的需求,对应不同的方案。本文将聚焦UPS设计方案展开讲述。

系统框图 – 离线式和在线互动式 UPS


离线式和在线互动式 UPS系统框图设计

系统框图 – 在线式UPS


离线式和在线互动式 UPS系统框图设计

拓扑


离线式和在线互动式 UPS系统框图设计

图1:在线式 UPS 的双转换级

在线式 UPS 是一个具有多级电源转换的复杂系统。图1显示了一个三相系统的原理图。对于在线式 UPS 系统,效率非常重要,因为在混合模式(也称为正常模式)下,系统电池在充电的同时需要提供稳定的交流输出。这也意味着系统必须要能够承受这个额外的充电电流。

输入交流电压通过 PFC 级转换为直流电压。目前有多种拓扑可供选择。选择何种方法取决于功率水平和相数。对于低功率的单相系统,可以使用传统升压 PFC。有关 AC/DC 拓扑的更多信息,请参阅揭秘三相功率因数校正 (PFC) 拓扑和电池储能系统 (BESS) 的 DC-DC 电源转换拓扑。

图腾柱是一种广泛用于高功率应用的 PFC 拓扑,它用有源开关代替二极管来提高效率。图腾柱可用于单相和三相应用。图腾柱 PFC 级由快桥臂(以 100 kHz 或更高的频率切换)和慢桥臂(以市电频率切换)组成。

对于快桥臂,建议采用新兴的 SiC(碳化硅)技术。SiC 提高了功率密度,使系统能够更快速地切换,并使用更小的无源元件,从而降低整体功耗。它还支持系统在更高的电压下运行,从而减少导通损耗。安森美 (onsemi) 既提供分立 SiC 器件(MOSFET 和二极管),也提供功率集成模块 (PIM)。

安森美产品组合中的 IGBT 或 SUPER FET 可用作慢桥臂开关。

最后值得一提的是,Vienna 整流器也是一种受欢迎的三相拓扑。其功率水平最高,因此需要 SiC 技术,包括 SiC 二极管和 SiC MOSFET 或 SiC 功率集成模块。

DC-DC 电池充电器

双向电池充电器位于 PFC 级和变频段之间。双向操作意味着电流可以双向流动,充电时流向电池,供电时流向负载。在某些不需要电气隔离的情况下,可以使用非隔离拓扑。然而,隔离型拓扑更适合高压应用。最常见的隔离式 DC-DC 转换器拓扑是 CLLC 谐振转换器和双有源桥 (DAB)。双有源桥效率高,可根据其模式作为整流器或转换器运行。根据电压和功率水平,可以使用不同的开关。对于单相系统,可以使用任何 650V 技术,包括 Si、SiC、IGBT。对于三相系统,1200V SiC MOSFET 是理想选择。

DC-AC 变频段

逆变器决定了 UPS 系统的输出性能。为了避免损坏敏感设备,保持正弦波输出是关键。变频段采用三电平或多电平拓扑来产生高质量的交流输出。目前,IGBT(绝缘栅双极晶体管)因为价格实惠且技术成熟而成为逆变器主开关的首选。

UPS 并不像太阳能逆变器那样正在经历快速发展。FGHL40T120RWD 是一款额定电压为 1200 V 的 IGBT,采用最新的 FS7 技术并搭配 EliteSiC SiC 二极管,可在 I-NPC 逆变器中实现高性能。

半桥配置很常见。栅极驱动器用于安全高效地驱动开关。NCD57200 是一款高压双通道栅极驱动器,具有一个非隔离的低边栅极驱动器和一个电气隔离的高边或低边栅极驱动器。高边驱动器可以自举。

PFC 控制器

安森美提供混合信号控制器,无需开发 MCU 软件。

2/3 通道交错式 CCM PFC 控制器

升压功率因数校正

推荐用于高功率应用

可对频率和输出电压进行编程

先进的安全特性 – 软启动、欠压锁定、电压骤降保护

三重故障检测防止反馈回路故障


离线式和在线互动式 UPS系统框图设计

图2:临界导通模式


离线式和在线互动式 UPS系统框图设计

图3:连续导通模式

无桥图腾柱多模式 PFC 控制器

固定频率 CCM(恒定导通模式),具有恒定导通时间 CrM 和谷底开关频率折返功能

专有电流检测方案

专有谷底检测方案

非常适合高功率多模式应用,最高 1kW,CCM >2.5kW

碳化硅 MOSFET

安森美提供具有不同额定电压的分立 SiC 二极管和 MOSFET。SiC MOSFET 在较高功率和较高开关频率下使用时,性能表现最佳。SiC MOSFET 的击穿电压为 650V 至 1700V。650V MOSFET 可用于升压 PFC 级和双向 DC-DC 转换器。1200V 和 1700V 产品组合适合图腾柱 PFC 和三相系统。由于采用特殊的平面设计,安森美的所有 SiC MOSFET 产品系列在整个生命周期内 RDS(ON)、VTH 或二极管正向电压均无漂移。

经优化,适合在高温下工作

改善了寄生电容,适合高频运行

RDS(ON)=22 mΩ @VGS=18 V

超低栅极电荷 (QG(TOT))=137 nC

高速开关和低电容(COSS=146 pF)


离线式和在线互动式 UPS系统框图设计

图4:NTH4L022N120M3S 在 800V、150°C 时的导通开关性能

碳化硅二极管

与传统的 Si 二极管相比,SiC 二极管具有更低的反向恢复损耗和更低的功耗,因此可用作整流器来提高效率。安森美产品组合中包括额定电压为 650V、1200V 和 1700V 的二极管。对于 PFC 升压应用,650V 二极管即可满足要求。对于三相 DC/AC 转换,更高的电压型号会是理想选择。

650V D2 系列 SiC 二极管

可用作升压 PFC 级的整流器

经优化,适合在高温下工作

6A 连续电流

雪崩额定值 24.5mJ

无反向恢复

DPAK 封装

UPS 系统中的功率集成模块 (PIM)

安森美在工业功率集成模块 (PIM) 设计领域表现出色,利用 SiC MOSFET 和 IGBT 技术实现 UPS 设计改进,其中包括使用 1200 V SiC 器件的 PFC、DC/DC 和逆变器模块。能源基础设施行业正以非常快的速度采用 SiC 功率器件,旨在提高效率或增加功率密度。得益于更低的开关损耗,SiC 功率器件可以实现更高的效率,降低散热要求,或者实现更高的开关频率,减小无源元件的尺寸和成本。这些优势表明 SiC 功率器件的高成本是合理的。

事实证明,在电气和热性能及功率密度方面,采用 SiC MOSFET 模块均展现出明显优势。安森美已发布第二代 1200V SiC 模块,采用 M3S MOSFET 技术,着重于提升开关性能和减少 RDS(ON)*面积。

表1:用于 UPS 的 SiC PIM 模块


离线式和在线互动式 UPS系统框图设计

NXH011F120M3F2PTHG 是一款 SiC 1200V 全桥模块集成一个带有 HPS DBC 的热敏电阻,采用 F2 封装。

M3S MOSFET 技术提供 RDS(ON) 典型值 = 11.3 mΩ(在 VGS = 18V、ID = 100A 的条件下)。

使用 Elite Power 仿真工具和 PLECS 模型生成工具可对采用 SiC 模块的各种电源拓扑进行仿真。

NXH008T120M3F2PTHG 是基于 1200V M3S 技术的 T 型中性点箝位转换器 (TNPC) SiC 模块。

M3S MOSFET 技术提供 RDS(ON) 典型值 = 8.5 mΩ(在 VGS = 18V、ID = 100A 的条件下)。

NXH800H120L7QDSG 是一款额定电压为 1200V、额定电流为 800A 的 IGBT 半桥功率模块。PIM11 (QD3) 封装。

新的场截止沟槽 7 IGBT 技术和第 7 代二极管可提供更低的导通损耗和开关损耗,使设计人员能够实现高效率和优异的可靠性。

NTC 热敏电阻,低电感布局。


离线式和在线互动式 UPS系统框图设计

图5:各种安森美模块封装

NXH011F120M3F2PTHG 是一款 SiC 1200V 全桥模块集成一个带有 HPS DBC 的热敏电阻,采用 F2 封装。

M3S MOSFET 技术提供 RDS(ON) 典型值 = 11.3 mΩ(在 VGS = 18V、ID = 100A 的条件下)。

使用 Elite Power 仿真工具和 PLECS 模型生成工具可对采用 SiC 模块的各种电源拓扑进行仿真。

NXH008T120M3F2PTHG 是基于 1200V M3S 技术的 T 型中性点箝位转换器 (TNPC) SiC 模块。

M3S MOSFET 技术提供 RDS(ON) 典型值 = 8.5 mΩ(在 VGS = 18V、ID = 100A 的条件下)。

NXH800H120L7QDSG 是一款额定电压为 1200V、额定电流为 800A 的 IGBT 半桥功率模块。PIM11 (QD3) 封装。

新的场截止沟槽 7 IGBT 技术和第 7 代二极管可提供更低的导通损耗和开关损耗,使设计人员能够实现高效率和优异的可靠性。

NTC 热敏电阻,低电感布局。

表2:用于 UPS 的 IGBT 和混合 PIM 模块


离线式和在线互动式 UPS系统框图设计
本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭