当前位置:首页 > EDA > 电子设计自动化
[导读]在UPS等电力电子设备中,控制方法是核心技术。早期的控制方法使得输出为矩形波,谐波含量较高,滤波困难。SPWM技术较好地克服了这些缺点。

UPS电力电子设备中,控制方法是核心技术。早期的控制方法使得输出为矩形波,谐波含量较高,滤波困难。SPWM技术较好地克服了这些缺点。目前SPWM的产生方法很多,汇总如下。

1)利用分立元件,采用模拟、数字混和电路生成SPWM波。此方法电路复杂,实现困难且不易改进;

2)由SPWM专用芯片SA828系列与微处理器直接连接生成SPWM波,SA828是由规则采样法产生SPWM波的,相对谐波较大且无法实现闭环控制;

3)利用CPLD(复杂可编程逻辑器件)设计,实现数字式SPWM发生器;

4)基于单片机实现SPWM,此方法控制电路简单可靠,利用软件产生SPWM波,减轻了对硬件的要求,且成本低,受外界干扰小。

而当今单片机的应用已经从单纯依赖于51系列单片机向其它多种单片机发展,尤其以嵌入式PIC单片机的发展应用更为广泛。PIC单片机含具有PWM功能的外围功能模块(CCP),利用此模块更容易通过软件实现SPWM,且具有更快的执行速度。

本文采用软硬件结合设计的方法,利用面积等效法,并且基于PIC单片机实现对试验逆变系统的SPWM控制。

1.面积等效的SPWM控制算法: 目前生成SPWM波的控制算法主要有4种:1)自然采样法; 2)对称规则采样法; 3)不对称规则采样法; 4)面积等效法。

理论分析后知自然采样法和面积等效法相对于规则采样法谐波较小,对谐波的抑制能力较强。又因为PIC单片机片内无较大空间实现在线运算,所以自然采样法不利于软件实现。本文的试验系统采用面积等效法实现SPWM控制。

脉冲宽度调制的发展背景

随着电子技术的发展,出现了多种脉冲宽度调制技术,其中包括:相电压控制PWM、脉宽PWM法、随机PWM、SPWM法、线电压控制PWM等,而在镍氢电池智能充电器中采用的脉宽PWM法,它是把每一脉冲宽度均相等的脉冲列作为PWM波形,通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化,可以通过调整PWM的周期、PWM的占空比而达到控制充电电流的目的。

脉冲宽度调制的特点

PWM的特点是从处理器到被控系统信号都是数字形式的,无需进行数模转换,让信号保持为数字形式可将噪声影响降到最小,噪声只有在强到足以将逻辑1改变为逻辑0或将逻辑0改变为逻辑1时,也才能对数字信号产生影响。

对噪声抵抗能力的增强是PWM相对于模拟控制的另外一个优点,而且这也是在某些时候将PWM用于通信的主要原因,从模拟信号转向PWM可以极大地延长通信距离,在接收端,通过适当的RC或LC网络可以滤除调制高频方波并将信号还原为模拟形式。

控制方法

等脉宽PWM法

等脉宽PWM法是PWM法中最为简单的一种,它是把每一脉冲的宽度均相等的脉冲列作为PWM波,通过改变其周期,达到调频的效果,改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化。

随机PWM

在20世纪70年代开始至20世纪80年代初,由于当时大功率晶体管主要为双极性达林顿三极管,载波频率一般不超过5kHz,电机绕组的电磁噪音及谐波造成的振动引起了人们的关注,为求得改善,随机PWM方法应运而生。

SPWM法

SPWM法是一种比较成熟的,如今使用较广泛的PWM法,前面提到的采样控制理论中的一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同的。

线电压控制PWM

前面所介绍的各种PWM控制方法用于三相逆变电路时,都是对三相输出相电压分别进行控制的,使其输出接近正弦波,但是,对于像三相异步电动机这样的三相无中线对称负载,逆变器输出不必追求相电压接近正弦,而可着眼于使线电压趋于正弦。

电流控制PWM

电流控制PWM的基本思想是把希望输出的电流波形作为指令信号,把实际的电流波形作为反馈信号,通过两者瞬时值的比较来决定各开关器件的通断,使实际输出随指令信号的改变而改变。

应用领域

电信

在电信使用上,脉冲宽度调制是一种信号调制的形式,其脉冲波的宽度对应到另一个特定资料会在传送端被编码,并于接收端解码,不同长度的脉冲波将会每隔固定的时间后被传递。

能量的传递

脉冲宽度调制可以被用来控制对于一个载流子能量传递的多寡,而不会产生由阻抗所造成的线性能量传递损失,此方法所需要付出的代价是,载流子所流失的能量并非一个常数且是不连续的,载流子上传递的能量也不是连续的。

PWM控制的工作方式主要包括以下两种:

恒频调宽法:这种方法保持PWM信号的频率不变,通过改变占空比来调节输出电压或电流的大小。这种方式简单易行,适用于对输出电压或电流进行连续调节的场合。

调频调宽法:这种方法同时改变PWM信号的频率和占空比,以实现更精确的控制。在需要快速响应和精确调节的场合,调频调宽法具有更好的性能。

PWM控制的应用领域

PWM控制技术在许多领域都有广泛的应用,包括:

电机控制:PWM控制技术可以用于电机的速度控制、位置控制以及力矩控制等。通过对电机驱动电路进行PWM控制,可以实现对电机的精确控制,提高电机的运行效率和性能。

电源变换器:PWM控制技术可以用于电源变换器的设计中,实现对输出电压和电流的精确控制。这种技术广泛应用于各种电源设备中,如UPS电源、开关电源等。

照明控制:在LED照明系统中,PWM控制技术可以用于调节LED的亮度。通过改变PWM信号的占空比,可以实现对LED亮度的连续调节,满足不同场合的照明需求。

音频处理:在音频放大器中,PWM控制技术可以用于提高音频信号的保真度和动态范围。通过对音频信号进行PWM调制和解调处理,可以消除音频信号中的噪声和失真,提高音质。

四、PWM控制的主要优势

PWM控制技术具有以下优势:

精确控制:PWM控制技术可以通过改变占空比实现对输出电压或电流的精确控制,具有高度的灵活性和准确性。

高效节能:PWM控制技术可以实现高效能量转换,减少能量损耗和浪费。在电机控制、电源变换器等领域中,PWM控制技术可以显著提高系统的运行效率和节能性能。

抗干扰性强:PWM控制技术采用数字信号进行控制,具有较强的抗干扰能力。在噪声干扰较大的环境中,PWM控制技术可以保持稳定的性能表现。

易于实现:PWM控制技术可以通过微控制器等数字设备实现,具有易于实现和灵活配置的优点。这使得PWM控制技术在各种电子系统中得到了广泛应用。本文介绍的基于PIC单片机的SPWM控制技术很好地把软硬件技术结合在一起,针对规则采样法谐波大的缺点,利用面积等效法较好地抑制了谐波。本文给出了具体的硬件试验系统及软件设计,分析试验结果波形后表明此方法输出谐波较小,在对输出波形质量要求较高的UPS逆变系统中有较强的实用价值。如今PIC单片机应用越来越广泛,电力电子技术发展越来越快速的阶段,这种软硬件结合的控制技术在其它很多应用领域也有较大的发展空间。

SPWM(Sinusoidal PWM)法是一种比较成熟的,目前使用较广泛的PWM法。SPWM法就是以该结论为理论基础,用脉冲宽度按正弦规律变化而和正弦波等效的PWM波形即SPWM波形控制逆变电路中开关器件的通断,使其输出的脉冲电压的面积与所希望输出的正弦波在相应区间内的面积相等,通过改变调制波的频率和幅值则可调节逆变电路输出电压的频率和幅值。本文主要详解stm32产生spwm原理及程序,首先来了解一下生成SPWM波的基理是什么,具体得跟随小编一起来了解一下。

生成SPWM波的基理

由于正弦交流量是典型的模拟量,传统发电机难以完成高频交流电流输出,而功率半导体器件于模拟状态工作时产生的动态损耗剧增,于是,用开关量取代模拟量成为必由之路,并归结为脉冲电路的运行过程,从而构成了运动控制系统中的功率变换器或电源引擎。典型的H桥逆变电路很容易理解(图1a)


一文解析stm32产生spwm原理及程序

对角联动的两个开关器件和与之对应的另一组对角桥臂同时实施交替的开关作业时,建立运行后,流经负载的电流即为交流电流(图1b),考虑到功率器件关断时的滞后特性避免造成短路,通常都做成(图1c)的波形结构。显然开关器件输出的是方波(矩形波)交流电流。

在交流应用场合,多数负载要求输入的是正弦波电流。

电工学认为,周期性的非正弦交流量是直流、正弦波和余弦波等分量的集合,或者是非正弦波也可以分解为相位差和频率不同的正弦波以及直流分量。

不良波形或失真严重的正弦交流量必然产生大量的低次、高次及分数谐波,丰富的谐波分量与基波叠加的情景使得正负峰值几乎同时发生,换向突变时急剧的运动状态将对负载造成冲击并导致负载特性的不稳定或漂移,又加重了滤波器件的负担,损耗也随之增大,非但降低了电网的功率因数,还对周边设备造成不良影响。

在高频化和大功率电力变换场合,装置内部急剧的电流变化,不但使器件承受很大电磁应力,并向装置周围空间辐射有害电磁波污染环境,这种电磁干扰(Electro Magnetic Interference简称EMI)还会引发周围设备的误动作及造成电能计量紊乱。抑制谐波和EMI的防御仍为重要课题或技术指标。

可见,简单的方波在功率应用场合下显示出了不尽如人意的一面。当然,在不触及负载特性、能量转换效率、环境污染和系统综合技术指标以及小功率应用场合的前提下,就控制方法而言则显得容易些。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭