当前位置:首页 > 技术学院 > 技术前线
[导读]‌单片机红外电路设计主要涉及发射模块和接收模块的硬件连接及信号调制解调原理‌,核心是通过51单片机控制红外发射管和接收头实现数据传输。

‌单片机红外电路设计主要涉及发射模块和接收模块的硬件连接及信号调制解调原理‌,核心是通过51单片机控制红外发射管和接收头实现数据传输。

红外发射模块设计

核心组件:NE555定时器或单片机PWM生成38kHz载波信号,红外发射管(如TSAL6238)调制后发射。 ‌

调制方式:数据“0”时载波连续发送,“1”时关闭载波,通过三极管控制发射管导通。 ‌

电路要求:发射功率需匹配接收端灵敏度(通常950nm波段),载波频率误差需小于±10%。 ‌

红外接收模块设计

核心组件:专用接收头(如TSOP1738)集成滤波、放大、解调功能,输出基带信号。 ‌

信号处理:接收头内部带通滤波器(38kHz)抑制干扰,自动增益控制适应信号强度变化。 ‌

接口连接:接收头输出端接单片机IO口,需外接4.7μF滤波电容降低噪声。 ‌

通信协议与限制

数据传输:采用半双工模式,波特率不超过3800 bps(受限于载波周期)。 ‌

抗干扰措施:发射端需空间分集或漫射片均匀分布光强,接收端需自适应判决电路。 ‌

典型应用场景

遥控开关:通过发射模块发送控制指令,接收模块解码后触发继电器。 ‌

测温系统:红外传感器采集温度数据,经蓝牙模块传输至手机。 ‌

本部分内容包括,红外发射部分原理、红外接收部分原理以及软件编码部分原理。

1、红外发射部分电路原理

红外发射功能主要由红外发射管来实现,红外发射管在外观上和透明的LED发光二极管极为相似,其驱动和控制方式也一致。在使用单片机控制发射管时,一般使用三极管来驱动,NPN三极管和PNP三极管都可以实现。如下图所示使用PNP三极管来实现的。

PNP三极管的基极通过电阻接单片机的GPIO口,发射管通过限流电阻接在PNP三极管的发射极上。当单片机的GPIO输出高电平时PNP三极管处于截止状态红外发射管不工作;当GPIO输出低电平时PNP三极管导通发射管工作,发出肉眼不可见的红外线,被接收管接收到。遥控器上的每一个按键都有一定的编码,该编码其实就是遵循一定规则的高低电平的脉冲,接收电路解析该脉冲从而执行对应的操作。

2、红外接收部分电路原理

前文说过,红外发射和红外接收是一对,成对使用。发射管是白色的,接收管是黑色的。可以使用三极管搭建接收电路也可以使用比较器来搭建电路,下面用三极管电路展示红外接收的电路。

在没有接收到红外信号时,接收管不导通,三极管Q1不导通,三极管Q3不导通,单片机接收到持续的高电平;当接收管接收到红外信号时,单片机接收到低电平。当遥控器的按键被按下时,按键对应的编码脉冲就会被单片机所接收到,单片机解析该脉冲,就能知道遥控器上是哪个按键被按下,从而实现用户的操作。但是,黑色的红外接收管抗干扰能力比较低,在设计电路的时候一般不选用,而是选用专用的红外接收头,最常用的型号为HS0038。而且,其红外接收电路简单,抗干扰能力强。

3、红外软件编码解析

前文提到的脉冲编码就是红外发射和红外接收之间的通讯内容,通讯这部分的数据或内容,被称作通讯协议。一般来说,红外通讯都遵循NEC的编码协议规范。NEC的协议规定,工作频率为38KHz,其数据格式由如下几部分构成:引导码、用户码、用户码补码、按键码、按键码补码等。一个完整的按键/数据周期是108ms。NEC编码规定0和1的编码如下:

编码0:0.56ms高电平+0.565ms低电平=1.125ms

编码1:0.56ms高电平+1.685ms低电平=2.245ms

当遥控器的某一个按键被按下后,发射管就会发出一串包含引导码、用户码、用户码补码、按键码、按键码补码的脉冲出来,脉冲如果要翻译出来的话,就是看0和1的序列,长度为2.245ms的脉冲代表数据1,脉冲长度为1.125的脉冲代表数据0。

接收端的红外专用探头感应该部分脉冲并送入单片机,单片机通过解析脉冲数据,计算出用户的按键信息,再执行相应的命令和逻辑,这样用户就可以在沙发上远程遥控空调和电视了。现在的很多手机上集成了红外发射电路,并带有自学习功能可以根据操作说明让手机去匹配设备的编码协议,协议匹配后就可以通过手机遥控电视、空调等设备了,这时候手机就变成了遥控器。由于通讯部分要处理比较复杂的数据,所以这类电路都是需要单片机支持的。

单片机设计红外线报警器的电路原理主要涉及电源电路、信号处理电路和报警输出电路三大部分。通过合理配置这些电路,并编写相应的单片机程序,我们可以实现一个功能完善、性能稳定的红外线报警器。希望的详细解析能为读者在设计和制作红外线报警器时提供有益的参考。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭