当前位置:首页 > 电源 > 电源AC/DC
[导读]另外,单电容半桥式变压器开关电源属于正激励输出电源。正激式电源的变压器伏秒容量一般都取得很大,励磁电流相对于等效负载电流来说非常小,即:在图1-40-b中i2远远大于i1

另外,单电容半桥式变压器开关电源属于正激励输出电源。正激式电源的变压器伏秒容量一般都取得很大,励磁电流相对于等效负载电流来说非常小,即:在图1-40-b中i2远远大于i1。由此,我们主要是对i2电流的作用进行分析,而对i1只把它看成是对i2进行调制,并且调制幅度很小。

如果不考虑i1对i2的调制作用,则当控制开关K1接通,电源电压Ui开始通过控制开关K1和开关变压器初级线圈的等效负载电阻R对电容C1进行充电,电容器两端的电压增量为:

 

 

(1-164)和(1-165)式中,Δuc 电容器充电时电容器两端的电压增量,Δ uc2为电源单独通过等效负载电阻R对电容器充电时,电容器两端的电压增量;Δ um2为电容充电电压增量的最大值,即电流i2对电容充电产生的电压增量最大值, U(0-)c2为电容器刚开始充电瞬间电容器两端的电压,即电容器开始充电时的初始电压;电容第一次充电时,由于初始电压U(0-)c2 = 0,所以ΔUm2 =Ui , Ui为电源电压;R为负载回路通过变压器次级线圈折射到变压器初级线圈回路的等效负载电阻,R =R1/n*n ,R1为变压器次级线圈输出回路的负载电阻。

RC为时间常数,时间常数一般都用τ来表示,即τ = RC,其中C = C1。这里为了简化在不容易混淆的情况下我们经常把电感L和电容C的下标省去。

当需要进一步考虑流过开关变压器初级线圈N1绕组的励磁电流对电容充电的影响时,可在(1-164)式右边乘以一个略大于一的系数,这是因为励磁电流与流过等效负载的电流对电容充电时,电流方向完全一致,并且充电曲线的曲率也很相近。

当控制开关K1关断,控制开关K2刚接通的时候,电容器C1将通过控制开关K2和开关变压器初级线圈的b、a两端进行放电。同样,电容放电时也可以看成是电容对两部分电路进行放电。电容放电的过程也可以参考图1-40,不过图中应该把电源Ui移去并把原来接电源的两端引线短路,以及把控制开关K1换成K2。

前面已经指出,在电感与电容组成的电路中,电容放电时其两端的电压是按余弦曲线下降的;而在电阻与电容组成的电路中,电容放电时其两端的电压是按指数曲线下降的。同理,由于励磁电流相对于等效负载电流来说非常小,这里我主要考虑流过等效负载电阻R对电容器C1进行放电的作用。根据前面分析,这里我们直接给出电容放电过程的数学表达式:

 

 

(1-166)和(1-167)式中,负号表示电容放电,其电流或电压的方向与电容充电时的电流与电压的方向相反;-Δuc 为电容器放电时任一时刻电容器两端的电压增量(取负值),-Δuc2 为电源单独通过等效负载电阻对电容器放电时,任一时刻电容两端的电压增量(取负值),-U(0+)c2 为电容器刚放电瞬间电容器两端的电压(取负值),或电容器在上一次充电时电容器两端的电压(取负值),即电容器开始放电时的初始电压;R为负载回路通过变压器次级线圈折射到变压器初级线圈回路的等效负载电阻,R =R1/n*n ,R1为变压器次级线圈输出回路的负载电阻。

同理,当需要进一步考虑流过开关变压器初级线圈N1绕组的励磁电流对电容放电的影响时,可在(1-166)式右边乘以一个略大于一的系数。

由此可见,要精确计算电容器每次充、放电时的电压值是非常麻烦的,如果同时也把流过变压器初级线圈的励磁电流对电容充放电的影响也考虑进去,计算还要更复杂。

在半桥式变压器开关电源中,控制开关K1每接通一次,电容器C1就要被充电一次;控制开关K2每接通一次,电容器C1就要被放电一次。但由于开关电源刚开始工作的时候,电容器C1事先没有充电,电容器两端的电压约等于零,所以,电容器每次充电的电荷或电压增量总是大于电容器放电的电荷或电压增量,因此,电容器两端的平均电压在开关电源刚开始工作的时候是一直在上升的;直到电容器每次充电的电压增量与电容器放电的电压增量完全相等时候,电容器两端电压的平均值才会稳定在某个数值上。

如果控制开关K1和K2工作时占空比完全相等,则:电容器每次充电的电压增量与电容器放电的电压增量也完全相等,电容器两端电压的平均值就会正好稳定在输入电压Ui的二分之一处。即:

Δuc =│-Δuc │ —— 电容充满电时 (1-168)

U(0-) c2≈U(0+) c2 ≈ Ui/2—— 电容充满电时 (1-169)

这里特别指出:(1-169)式中认为电容充、放电时的初始电压值基本相等,是因为电容的容量一般取得很大,每次充放电时电容两端的电压变化很小,这同时也意味着电容器充满电所需要的时间相当长。

如果电容器两端电压的平均值不等于输入电压Ui的二分之一,那么,电容每次充电的电荷或者电压增量与电容器放电的电荷或者电压增量也不会相等,此时,电容器两端电压的平均值将会跟随充电或者放电增量较大的一方而变化。例如,当控制开关K1接通的时候,如果电容器充电的电压增量,大于控制开关K2接通时电容器放电的电压增量,则电容器两端电压的平均值将会上升;反之,电容器两端电压的平均值将会下降。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

本文针对具有快速瞬态变化和噪声敏感特性的负电压轨应用,提出了一种反相降压-升压解决方案。其中采用了一款单芯片降压转换器,在反相降压-升压(IBB)拓扑结构中融入了Silent Switcher® 3(SS3)技术。此解决...

关键字: 降压转换器 电容 电感

2025中国国际汽车测试展将于2025年8月27-29日在上海世博展览馆举行

关键字: 信号仿真仪器 继电器 变压器

电容,作为电路设计中不可或缺的器件,以其独特的功能和广泛的用途,在电子领域扮演着举足轻重的角色。它不仅是一种无源元件,更在多个方面发挥着关键作用,如旁路、去耦、滤波以及储能等。

关键字: 电容

随着电力技术的不断发展,大功率非晶态变压器因其独特的优势,如低损耗、高导磁率等,在众多领域得到了广泛应用。然而,磁偏饱和问题严重影响了大功率非晶态变压器的性能与稳定性,成为制约其进一步推广应用的关键因素。因此,深入研究并...

关键字: 大功率 变压器 非晶态

本文中,小编将对平行板电容传感器予以介绍,如果你想对它的详细情况有所认识,或者想要增进对它的了解程度,不妨请看以下内容哦。

关键字: 传感器 电容 电容传感器

集成电路作为将多个电子元件集成在一起的芯片器件,虽然功能强大但较为脆弱。高温环境可能导致集成电路参数漂移、耐久性下降和内部缺陷暴露等不良影响。

关键字: 电容 电阻

电容式触摸感应技术是一种广泛应用于现代触摸屏设备中的技术,如智能手机、平板电脑、电脑触摸板等。其原理基于电容的变化来检测和感应触摸操作。以下是对电容式触摸感应技术原理的详细阐述,旨在以清晰、结构化的方式呈现相关信息。

关键字: 电容 传感器

变压器作为电力系统中的重要组成部分,其性能稳定与否直接关系到整个系统的安全运行。

关键字: 变压器

环境应力筛选试验(ESS试验)是考核产品整机质量的常用手段。在ESS试验中,随机振动的应力旨在考核产品在结构、装配、应力等方面的缺陷。体积较大的电容,在焊接后,如果没有施加单独的处理措施,在振动试验时容易发生引脚断裂的问...

关键字: 电容 元器件
关闭