当前位置:首页 > 电源 > 电源AC/DC
[导读]采用高速ADC的设计师所面临的最大挑战之一就是找到一个适合于驱动ADC的放大器。直到最近,ADC驱动器的选择还一直受限。通常射频放大器为单端,体积大、功耗高,而且需要一个

采用高速ADC的设计师所面临的最大挑战之一就是找到一个适合于驱动ADC的放大器。直到最近,ADC驱动器的选择还一直受限。通常射频放大器为单端,体积大、功耗高,而且需要一个5-12V的电源。最近,业界开发出了全差分放大器,但它们中很多都是被优化用于窄输入信号带宽,需要一个高电压电源,或者需要约束ADC的速度、噪声和/或失真性能。由凌力尔特公司开发的新放大器系列能帮助工程师实现ADC的性能,同时简化高频电路板的设计。

高速+高性能+低电压电源

LTC6?00-20和LTC6?01-20为该高速全差分放大器家族的首批成员,工作电源为3V或3.3V,具有优异的性能。这两款器件都具有20dB的内部固定增益,具有高速、低噪声和低失真以及低功耗特点。采用的是先进的互补双极硅锗工艺。由于锗原子比硅原子大,在硅工艺中有选择地加入一些锗会在材料的晶体结构中产生应力。实际上这种应力将导致好的电特性,例如更高的迁移率和更精密的基区宽度控制,可以制作速度更高的晶体管。LTC6?00-20的-3dB带宽为1.8GHz,而压摆率达到4500V/us,所耗电流仅仅80mA。LTC6?01-20仅以一半的功率实现大约LTC6?00-20速度的2/3。图1给出了输出信号为2Vpp时,LTC6?00-20在不同频率上的互调失真性能。LTC6?00在140MHz能获得90dBc失真,而在几百MHz的频率下能获得-70dBc的失真。

ADC驱动器的另一个关键性能是贡献的噪声要小。LTC6?00基于一个差分运算放大器,输入噪声密度很低,为1nV/√Hz。内部100Ω的差分输入电阻不可避免地会增加一定噪声,产生2.1nV/√Hz的总输入参考噪声密度。另一个*判噪声的方法是根据信噪比。LTC6?00-20输出噪声密度为21nV/√Hz(因为增益为20dB或10V/V)。如果把信号带宽限制到50MHz,噪声总和为148μVRMS。相对于2VP-P满量程信号来说,允许73.5dB的信噪比。这与LTC2249这类的14位通用ADC相匹配。

图1:LTC6?00的三阶互调失真与频率的关系图。

集成带来高性能

图2为LTC6?00的框图。LTC6?00-20和LTC6?01-20的设计思想是容易使用。除了放大器外,还集成了几个其他功能,包括增益设定电阻、输出信号滤波以及输出共模电路。所有功能都封装在一个3x3mm的16引脚的QFN封装里。这种集成带来了以下几个显著的优点。

图2: LTC6?00的功能框图。

最为显著的是减少了外部元器件数量,电阻器和电容器较少意味着占位面积小,且令人头疼的问题也少。

通过集成高度匹配的增益设定电阻,提供了精密的增益,因而稳定度得到改善。稳定度改善的原因是将敏感的反馈环路内置到芯片封装里。电路板上的反馈环路的布线所引起的寄生电容会产生寄生极(parasitic pole)。而且,将输入和输出端引出来的感性连接线移出敏感的反馈环路。

由于增益是已知的并且是内部固定的,放大器在尽可能宽的带宽上具有最大的平坦度,群延迟变化也最小。为了实现特定的增益设置,可以调整内部补偿,从而使速度、功率和失真性能达到最佳。

提供两路差分输出—滤波输出和未滤波输出。片上滤波器是一个专门设计的单极点RC滤波器,用来简化高速管线和SAR ADC所呈现的容性负载的驱动。拐点频率(corner frequency)的调整很容易,只需增加几个外部元件。

输出共模引脚允许ADC采用相同的参考地,以便设置ADC驱动器的输出信号电平。当输入采用AC耦合时,输入共模电压被自动偏置到与VOCM引脚上的电压相近的电平。LTC6?00-20在I/O耦合方面非常灵活,输入和输出端都可以利用AC或DC耦合。

应用实例

图3给出了一个典型应用实例,即利用LTC6?00来驱动LTC2208 16位130MSPS ADC。本例中,输入信号为单端,通过一个隔直流电容加到LTC6?00的+IN输入端。当然,输入信号也可以直流耦合,只要直流电压位于放大器的输入共模范围内。从图2中不难发现,LTC6?00-20的差分输入阻抗为200Ω。利用一个66.5Ω的电阻使得总输入阻抗为50Ω,从而可以与50Ω的源阻抗匹配。(在其他情况下,源阻抗可能是200Ω,则需要一个1:4的变压器。)-IN输入端接了一个29Ω的电阻,目的是为内部运算放大器提供端口平衡。LTC6?00-20的输出经过一个10Ω的串联电阻,直接连接到ADC的输入端。

图3:LTC6?00和LTC2208应用实例。

LTC6?00与ADC共享同一个3.3V的电源。LTC6?00利用3V或3.3V的电源供电,即可将ADC驱动到满量程并实现高性能。而以前的解决方案中,要想将ADC驱动到输入范围的满量程,并提供高性能,则需要电压为5V的电源甚至更高。

LTC220x家族的ADC在输入摆幅以1.25V的共模电压为中心时工作最佳。而LTC6?00使此变得很容易:将ADC的VCM引脚简单地连接到LTC6?00的VOCM引脚上,放大器的内部共模反馈环路确保了输出以VOCM电压为中心。其他的ADC首选采用1.5V电压,但接口都一样。

本文小结

如今亚微米工艺使得高速ADC获得很多性能优势。但是,在奈奎斯特采样或欠采样时,为了实现最高功效,需要一个高性能的全差分放大器来驱动。LTC6?00通过结合SiGe工艺和创新设计,在高频率段提供了不错的性能,同时还能采用3V或3.3V的低电源电压。芯片采用3x3mm的无引脚封装,所需的外部元器件数量少,从而使得该驱动器可以直接放到ADC的输入端,可以实现高性能和紧凑的PCB设计。差分输出被优化,从而可以直接实现优异的高速ADC的驱动,具有高线性度,输入噪声低,因而适合用于像通信接收系统和高速测试系统等类的高性能应用。

发布者:小宇

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在这篇文章中,小编将对直线电机的相关内容和情况加以介绍以帮助大家增进对它的了解程度,和小编一起来阅读以下内容吧。

关键字: 电机 直线电机 驱动器

在全球倡导节能减排与可持续发展的大背景下,混合动力和电动汽车(HEV 和 EV)凭借其高效、低排放的优势,逐渐成为汽车行业发展的主流方向。然而,要进一步提升这类车辆的性能,关键在于优化其电力系统,其中栅极驱动器 IC 发...

关键字: 混合动力 电动汽车 驱动器

在汽车电子系统不断发展的当下,采用智能手段控制车内外照明愈发关键。同时,紧凑的车身控制模块集成的功能持续增多,这一趋势也带来了诸多技术挑战。其中,汽车照明系统对电子元器件的要求日益严苛,而智能复用器在解决 PWM 通道、...

关键字: 电子系统 复用器 驱动器

2025年7月15日 – 致力于快速引入新产品与新技术的业界知名代理商贸泽电子 (Mouser Electronics),首要任务是提供来自1,200多家知名厂商的新产品与技术,帮助客户设计出先进产品,并加快产品上市速度...

关键字: 驱动器 AI摄像头 微控制器

【2025年5月20日, 中国上海讯】在全国两会聚焦新能源汽车充换电基础设施升级、力推超充网络扩建、高速充电走廊建设及换电模式普及的背景下,充换电行业正迎来高质量发展的关键期。近日,英飞凌科技宣布与深圳优优绿能股份有限公...

关键字: 驱动器 半导体 碳化硅

在全球积极寻求可持续能源解决方案的今天,可再生能源的发展已成为应对能源危机和环境挑战的关键。太阳能作为一种清洁、丰富且取之不尽的可再生能源,正逐渐在能源领域占据重要地位。而在太阳能系统中,光伏(PV)逆变器无疑是核心组件...

关键字: 可再生能源 逆变器 驱动器

【2025年4月10日, 中国上海讯】在全球数据中心加速向高效化、集约化转型的背景下,高频中大功率UPS(不间断电源)市场需求持续攀升,对能效、功率密度及可靠性的要求亦日益严苛。 近日,英飞凌宣布与深圳科士达科技股份有限...

关键字: MOSFET 驱动器 功率半导体

在这个项目中,您将学习使用W5100S-EVB-Pico 2的基础知识,以及如何使用Adafruit IO在CircuitPython上使用它,基于一个简单的LED程序,通过向上或向下移动操纵杆或使用Adafruit I...

关键字: LED 控制器 驱动器

半桥拓扑结构广泛用于各种商业和工业应用的电源转换器件中。这种开关模式配置的核心是栅极驱动器IC,其主要功能是使用脉宽调制信号向高端和低端MOSFET功率开关提供干净的电平转换信号。

关键字: 驱动器 半桥拓扑结构 MOSFET
关闭