当前位置:首页 > 电源 > 电源AC/DC
[导读]导读:本文分析了三相电压源型PWM整流器启动过程并建立其动态模型,分析了产生过冲电流的原因,介绍了冲击电流幅值的估算方法,在此基础上提出了一种新型软启动控制方法,并

导读:本文分析了三相电压源型PWM整流器启动过程并建立其动态模型,分析了产生过冲电流的原因,介绍了冲击电流幅值的估算方法,在此基础上提出了一种新型软启动控制方法,并通过仿真与实验验证了理论分析。

采用LCL滤波器的三相电压源型脉宽调制(PWM)整流器广泛应用于中高功率场合,且可双向运行。基于坐标变换的直接电流控制方法具有控制精度高、调节速度快等优点,广泛应用于三相PWM整流器的控制。直接电流控制中的比例积分(PI)调节器会导致整流器启动瞬间产生过冲电流,使得功率器件承受较大的瞬时电流应力,影响系统的可靠性,故需研究三相整流器启动冲击的抑制方法。

1 引言

三相PWM整流器具有直流电压可控、功率因数高、网侧电流畸变小等优点,广泛应用于新能源发电、电动汽车充放电站等领域。目前常用的三相整流器控制策略有基于d,q旋转坐标系的直(间)接电流PI控制,基于反馈线性化的三相PWM控制法,三相PWM整流器的H∞鲁棒控制等。其中,基于d,q旋转坐标系的直接电流PI控制结构清晰、实现简单,响应速度快,且设计步骤可参考传统的PI设计经验,得到了广泛应用。直接电流PI控制应用于三相整流器时,会在启动时导致较大的冲击电流,增加了功率器件的电流应力,对器件选型及工作可靠性产生了很大影响。

针对三相PWM整流器的启动冲击问题,这里介绍了启动瞬间PI控制器的调节过程,建立了系统的动态模型,在此基础上给出了冲击电流峰值的计算公式,指出了产生启动冲击的原因和影响因素,分析了PI参数对冲击电流大小的影响,并提出了一种新型软启动算法,通过仿真和实验验证了理论分析的可行性。

2 三相PWM整流器控制与建模

三相PWM整流器的主电路拓扑为三相半桥电压源型变换器(VSC),如图1所示,主要由LCL滤波器、三相桥臂及直流侧电容组成。

忽略R,经d,q坐标变换,系统状态方程为:

Ldid/dt=ud-ed, Ldiq/dt=uq-eq (1)

式中:ud,uq分别为桥臂电压d,q轴分量;L为Lg和Lt之和;id,iq分别为有功、无功电流分量;ed,eq分别为电网电压d,q轴分量。

图2示出系统的控制框图。当整流器正常工作时,将旋转坐标系的d轴与电网电压矢量进行同步。此时eq=0,初始条件下uq=0.假定误差及扰动均较小,则根据式(1)可知在启动过程中iq不会产生冲击。因此,在单位功率因数状态下,ed和ud是影响系统启动冲击的关键因素。

3 启动冲击分析

整流器启动瞬间电压环离散PI控制器输入输出关系表达为:

式中:kp2,ki2分别为电流环PI调节器比例系数和积分系数;,id分别为有功电流给定值与反馈值;uod为电流内环输出;ei为电流环误差信号。

假定轻载启动,则id逐渐增大,ei恒为负。由式(3)可知,此阶段uod为负。设电流环PI调节器输出参考电压矢量在d轴上投影的最大值为Umax,则ud与uod的关系为:

Udc在启动瞬间可近似为恒定,则uod与ud成线性关系,其比例系数为。此时ed为正常数,根据式(2)~(4),ud为负值,ud-ed的绝对值很大,id快速下降。在id从零降到的过程中,ud的值取决于电流环PI调节器中kp2,ki2的大小关系,且保持为负值。当id=时,ei=0,若此时ud仍未达到ed,id将继续下降并超过,直到ud=ed时,id达到峰值。此后ud会超过ed,根据式(1)可知,此时id开始上升,并达到。之后,直流侧电压逐渐达到稳态,过程如图3所示。为方便观察,图中有功电流及其给定均用绝对值表示。Idsat为电流环给定饱和值,I0为有功电流初始值,Ipeak为有功电流峰值。

可见,kp1,ki1对启动冲击影响有限,kP2,ki2对启动冲击具有较大影响,为简化公式,用kp和ki替代kp2和ki2.由于采用数字控制器,故各状态方程均为离散,列写系统差分方程,可求得冲击电流峰值:

4 启动冲击的抑制方法

图4示出三相整流器系统框图。其中,GPI(s)为电流环PI调节器传递函数,其表达式为:

GPI(s)=kp+ki/s (6)

1/(Ts+1)为采样延迟,整流器传递函数为:

GPWM(s)=kPWM/(0.5Ts+1) (7)

GLCL(s)为LCL滤波器传递函数,由于启动冲击为低频响应,LCL滤波器可等效为单L滤波器,故低频下GLCL(s)满足:

GLCL(s)=1/(R+LsS) (8)

式中:Ls=Lg+Lt.

启动冲击是由负常量ed和动态响应超调量两部分引起的电流冲击共同组成,故可在电流环中加入前馈量ed和第一个采样周期的比例输出,并引入高通滤波负反馈法来分别解决这两部分冲击,则此时电流环PI调节器输出初始值为:

可见,kp,kPWM下降均会导致超调量上升。当系统稳定工作时,由于直流侧为阻容放电回路,稳态加载时直流侧电压变化较慢,每个采样周期电流环给定值增量较小,冲击较低,PI参数取值范围较宽,所以设计参数时为保证带LCL滤波器的整流器不发生谐振并尽量降低损耗,PI调节器的kp往往取值较小。但整流器启动时直流侧电压远低于稳态时直流电压,电流环给定为阶跃饱和信号,且此时kPWM下降,超调量大幅上升。因此可在电流内环中加入高通滤波负反馈环节,则改进后的电流内环控制回路如图5所示。

其开环、闭环传递函数分别为:

相对于普通的基准斜坡缓起控制方法,电网电压初值前馈法无需进行PI参数的切换,提高了系统的稳定性和可靠性。

5 仿真和实验验证

基于上述分析,搭建基于Matlab/Simulink的18 kW三相整流器仿真模型,直流侧额定工作电压700 V,交流电网电压220 V/380 V/50 Hz,交流侧滤波电感分别为1.8 mH和1.2 mH,输出滤波电容20μF,开关频率5kHz.启动时id动态响应如图6a所示,调节时间约为0.03s.

基于仿真模型搭建了一台18 kW的三相整流器原理样机,其相关参数与仿真模型一致。开关管选取FF75R12RT4.采用高通滤波器负反馈法启动,并将饱和值设定为20 A,启动时的c相进网电流IC和电网电压‰波形如图6b所示。可见,在整流启动时,高通滤波器负反馈法可有效抑制启动冲击电流,且动态特性较好。

6 结论

本文研究了三相整流器的启动冲击,对启动过程进行了数学建模,分析了启动冲击产生的原因并给出了估算启动冲击电流大小的计算方法。在此基础上,针对启动冲击产生的两个要素提出了电流高通滤波负反馈软启动法,分析了其启动性能,并研制了一台18 kW的三相整流器原理样机。通过仿真和实验表明,高通滤波负反馈法简单有效,动态响应速快,可实现快速无冲击启动。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

整流是将交流电转换为直流电的过程,逆变是将直流电转换为交流电的过程。整流和逆变是电力电子学中两个最基本的电力转换过程。整流器是由晶体管、二极管等元器件组成的电路,通过控制晶体管的开关状态来控制电流的方向,将交流电压转换为...

关键字: 逆变器 整流器

为增进大家对电焊机的认识,本文将对电焊机的主要系统和组成予以介绍。

关键字: 电焊机 指数 变压器 整流器 电路板

在现代电源管理技术中,同步整流凭借其独特优势,已成为各类开关电源的关键技术,广泛应用于从消费电子到工业电源等众多领域。它通过运用导通电阻极低的功率 MOSFET 取代传统二极管整流器,显著降低了整流过程中的导通损耗,大幅...

关键字: 电源管理 同步整流 整流器

在现代电源管理技术中,同步整流作为一种高效的整流方式,广泛应用于各类开关电源中,从消费电子设备到工业电源系统都能看到它的身影。同步整流通过使用导通电阻极低的功率 MOSFET 来替代传统的二极管整流器,显著降低了整流过程...

关键字: 电源管理 整流器 同步整流

对海洋铺管船铺管装备支撑结构的特点及类型进行了简单分析 ,对带有法兰眼板(180 mm的钢锻件)的支撑铰座的焊接质量控制要点进行了详细阐述 , 最终获得满足工艺要求的产品 ,可为高端海工项目的监造提供参考。

关键字: 钢锻件 焊接检验 质量控制 海工装备 方法

可控硅,作为电子领域中的一种重要器件,其工作原理及广泛应用备受关注。这种器件以其独特的性能,在电力电子、电机驱动、自动控制等领域发挥着不可或缺的作用。

关键字: 可控硅 整流器

最近的进展已经通过在低侧MOSFET(同步整流器)上取代压降来消除电流检测电阻。这种拓扑节省了感测电阻的成本和空间,并且还提供了效率的适度提高。

关键字: MOSFET 整流器

在车辆电气系统中,高低压直流/直流转换器是一种可逆的电子装置,它将直流从车辆的高压(400V或800V)电池变为低直流电压(12V)。这些转换器可以是单向或双向的。从1千瓦到3千瓦的功率水平是典型的,转换器的高压电网(主...

关键字: 整流器 有源钳位电路

整流器是将交流电(AC)转换成直流电(DC)的电路。交流电总是随时间改变其方向,而直流电却一直朝一个方向流动。在典型的整流电路中,我们使用二极管将交流电整流为直流电。但是这种整流方法只能在电路输入电压大于二极管正向电压(...

关键字: 运算放大器 整流器 二极管 整流电路

在现代电子设备中,AC-DC变压器扮演着将交流电转换为直流电的重要角色。然而,在实际应用中,如果AC-DC变压器的电容未完全放电就重新上电,可能会导致输出电压异常,这不仅会影响设备的正常运行,还可能对设备造成损坏。

关键字: AC-DC变压器 直流电 整流器
关闭