在功率因数校正(PFC)电路中,电感作为能量转换的核心元件,其磁芯材料的损耗特性直接决定了系统的温升与可靠性。当开关频率突破100kHz进入高频时代,铁氧体与金属磁粉芯的损耗博弈愈发激烈。本文以TDK PC95铁氧体与日立FT-3H铁硅铝磁粉芯为典型案例,通过实测数据与理论分析,揭示两种材料在100kHz下的损耗机制与温升差异,为工程师提供低温升选型的实战指南。
在功率因数校正(PFC)电路中,电感作为能量存储与转换的核心元件,其磁芯材料的选择直接决定了系统的效率、体积与可靠性。当开关频率突破50kHz进入高频时代,铁氧体与金属磁粉芯的损耗特性呈现显著分化——前者以低损耗优势主导高频场景,后者则凭借高饱和能力在特定领域坚守阵地。本文将从材料特性、损耗机制、温升模型三个维度,揭示两种材料在高频PFC中的选型逻辑。
数据中心服务器电源、5G基站供电模块,LLC谐振变换器凭借其软开关特性与高功率密度优势占据主导地位。然而,当负载率低于30%时,传统LLC控制器常面临效率断崖式下跌的困境——开关损耗占比激增、控制电路静态功耗凸显,导致整机难以满足80 Plus钛金或DoE Level VI等严苛能效标准。本文将聚焦安森美NCP13992与ST L6599两款主流控制器,解析其谷底导通锁定与突发模式优化技术如何破解轻载效率难题。
电动汽车充电桩、数据中心服务器电源等高功率密度场景,LLC谐振控制器凭借其软开关特性与高效能量转换能力,已成为AC-DC转换的核心方案。然而,参数配置的复杂性常让工程师陷入“调参地狱”——软启动时间过长导致启动失败、死区时间不当引发硬开关损耗、轻载效率崩塌违背能效标准……这些陷阱不仅影响产品性能,更可能推高研发成本与周期。本文将深入剖析三大关键参数的内在关联,结合实际案例揭示协同优化策略。
在智能手机快充、服务器电源、电动汽车充电桩等场景中,AC-DC电源的效率与体积始终是核心矛盾。传统硬开关拓扑因开关损耗大、EMI噪声高,逐渐被软开关技术取代。其中,LLC谐振变换器凭借其全负载范围软开关、高功率密度、低EMI等优势,成为中高端AC-DC电源的主流选择。然而,其复杂的频率调制特性与轻载效率衰减问题,仍制约着系统性能的进一步提升。本文将从频率调制策略优化与轻载效率提升两个维度,结合实际案例探讨LLC谐振变换器的平衡之道。
氮化镓(GaN)作为第三代半导体材料的代表,凭借其高电子迁移率、低导通电阻和超快开关速度,在高频、高功率密度电源领域展现出显著优势。然而,GaN器件的驱动电路设计面临独特挑战:其门极电荷特性、传输延迟要求及抗干扰能力直接影响系统效率与可靠性。本文从门极电荷匹配、传输延迟优化及抗干扰性测试三个维度,结合典型应用案例,系统阐述GaN驱动芯片的选型方法。
在AC-DC电源设计领域,功率器件的选型直接影响系统效率、体积与成本。随着第三代半导体材料的突破,碳化硅(SiC)MOSFET凭借其低损耗特性,逐渐在高压、高频场景中替代传统硅基器件。而超结(Super Junction, SJ)MOSFET作为硅基器件的升级方案,通过电荷平衡结构实现了高耐压与低导通电阻的平衡。本文将从开关损耗与导通损耗的权衡视角,结合实际案例与实验数据,深入分析两种器件的技术特性与选型策略。
在全球能源转型与国产替代加速的双重驱动下,AC-DC电源行业正经历从技术追赶到生态重构的关键阶段。国产器件通过参数优化与可靠性验证的双重突破,已在消费电子、工业控制、新能源汽车等领域形成规模化替代效应。本文将从核心器件参数对比、可靠性验证流程、降本增效案例三个维度,揭示国产替代的底层逻辑与实践路径。
锂离子电池:锂离子电池是一种二次电池(充电电池),通过锂离子在正极和负极之间的移动来实现充放电。
在追求2060年“碳中和”目标的道路上,高效利用绿色能源显得尤为重要。功率模块,作为绿色能源转换的关键组件,其性能至关重要。
随着人们越来越重视身体健康,以及众多国家面临人口老化的问题,使得医疗可穿戴设备的需求快速增加,这些可穿戴设备通常采用电池操作,因此要求低功耗、小体积,这对相关产品的设计带来挑战。
BLE因其低功耗特性,广泛应用于物联网、健康监测、智能家居等领域。在设计和开发这些蓝牙设备时,需要关注如何优化功耗、确保通信稳定性和降低延迟。
无线单片机是一种集成了微控制器、存储器、A/D转换器、接口电路和无线数据通讯收发芯片的无线片上系统(SoC)。
车载充电器是一种通过汽车电瓶供电的充电设备,主要用于为便携式或手持式电子设备(如手机、平板电脑、GPS等)提供充电服务。它通常插入汽车的点烟器插座,将汽车电瓶的12V(轿车)或24V(卡车)直流电转换为适合电子设备使用的5V USB电压或其他电压。
数组和指针在使用上还有一些区别。首先,数组名代表整个数组,可以用来初始化其他数组,但数组名不能被赋值或自增。其次,数组在函数调用时,传递的是数组的地址,而不是整个数组。指针可以被赋值或自增。指针还可以用来动态分配内存空间,这是数组无法做到的。指针也可以用来实现复杂的数据结构,如链表、树等。