当前位置:首页 > 模拟 > 模拟
[导读] 针对日益增长的汽车遥控无钥匙进入系统(RKE)市场,飞思卡尔半导体近期推出了包含硬件和软件安全协议(VKSP)的整体解决方案。

针对日益增长的汽车遥控无钥匙进入系统(RKE)市场,飞思卡尔半导体近期推出了包含硬件和软件安全协议(VKSP)的整体解决方案。
    RKE由发射端(遥控钥匙)和集成于车身控制模块中的接收端组成。发射端将用户按键命令通过数据编码、加密和组帧后通过射频发射电路发射,而车内接收端则将接收到的信号通过射频解调、数据解码和帧解密后完成棚应车门、车灯控制和报警等用户指令。系统框图如图1。

    发射端:使用Freescale低端8位MC9S08QG4/8(4K/8K Flash)微控制器完成用户按键的数据编码、加密组帧,再通过SAW声表谐振器电路发射至UHF频段。
    接收端:使用UHF射频接收芯片MC33596完成信号解调和数据曼彻斯特解码,再将数据传送到车身主控芯片(本没计选用了8位MC9S08DZ系列)进行数据解密和指令执行。
    加密协议:采用Freescale研发的町变密钥安全协议(VKSP)。
    可变密钥安全协议(VKSP)是飞思卡尔专门为遥控类应用市场开发的安全传输协议。其特点为:
    ◆采用128位密钥加密验证,增强了安全性。
    ◆密钥中的32位可变密钥(计数器)部分随时问和按键而增加。
    ◆即使在遥控距离外被许多次按键操作之后,该钥匙也可以继续正常使用,不需要和接收端重新进行该钥匙的学习流程。
    ◆最大支持254个不同指令传输。
    ◆除了采用飞思卡尔提供的AES加密算法模块外,用户也可以根据需要(如缩小程序大小,减少解密时间)使用自己的加密算法模块。
    ◆纯软件实现,可以灵活地应用于各类微控制器。
    ◆软件大小:不包含AES加密模块约为1.5 KB,如果含AES模块则接近3 KB。软件以库函数的形式免费授权给采用飞思卡尔方案的客户使用。
    VKSP的发送过程如图2。

    每次按下钥匙,将会产生一个发送帧。发送帧有两个部分:数据部分和消息验证码(MAC)部分。数据部分不用加密,由3个部分共64位组成:钥匙号。3字节;用户命令,1字节;可变密钥,4字节。每次发送随时间和用户按键而增加,以确保即使用户命令相同,每次发送的消息帧内容也不会重复。消息验证码(MAC)部分有8个字节,由加密模块产生。
    接收过程分为3步,如图3。

    ①接收端检查接收到的发送帧中的钥匙号足否存在于接收端存储的有效钥匙号数据库中。如果存在,则从接收端数据库中同时取出该钥匙对应的本地密钥(localkey)和可变密钥(variable key),进入下一步骤,否则丢弃该帧。
    ②检查发送帧中的可变密钥是否大于①中接收端数据库巾该钥匙目前的可变密钥。如是,进入下一步骤,否则丢弃该帧。这一步骤保证了任何再次重复发送的帧不会被认为有效帧。
    ③进行消息码验证。由接收帧中的数据字段和从接收数据库中取出的该钥匙本地密钥通过加密模块生成消息验证码。由于发送端和接收端使用相同的加密模块,所以,如果发送端和接收端生成的两个消息验证码相同,则该帧被认为有效,用户命令被执行;同时,更新该钥匙当前的可变密钥至接收端数据库中。
    由上述过程可知,每一把新钥匙必须首先完成学习过程,即将该钥匙的钥匙号和本地密钥存储到接收端数据库以后,该钥匙才能被识别使用。为了系统安全性,接收系统必须在指定的安全环境被激活的状态下才进行学习帧的识别,例如用户在接收端按下一个特定的按键或者开关。图4表示了学习过程和学习帧的结构。

    ◆接收端首先检查是否处于安全环境激活状态,从而决定是否进行学习帧识别。
    ◆发送端利用一个伪随机数发生器产生128位随机数,然后和厂商提供的128位OEM码(发送端和接收端必须共享同样的OEM码)通过加密模块产生128位输出数据,截取其中64位作为消息验证码,截取特定位数存储在发送端作为该钥匙本地密钥。同时,将该128位随机数和消息验证码通过两个连续的学习帧发送。两个学习帧分别由数值OXFE和OXFF特征码来识别。
    ◆接收端通过特征码检测到学习帧并提取其中的128位随机数,然后依靠和发送端同样的厂商128位OEM码和加密模块完成消息验证码比对验证,再按照和发送端同样的输出截取方式生成和发送端相同的该钥匙本地密钥,最后将该本地密钥和钥匙号存储在接收端数据库中,从而完成该钥匙的学习过程。
    综上所述,飞思卡尔半导体的RKE整体方案主要特点及其优势如下:
    ◆系统选用通用MCU控制器,客户可以根据需要添加应用功能,增强了灵活性。
    ◆接收端不需要单独的解密芯片,解密算法集成在车身控制器中实现,简化了方案,降低了成本。
    ◆钥匙端系统当没有用户按键时候,处于休眠状态,节省系统功耗。
    ◆UHF接收芯片MC33596(或者舣向收发芯片MC33696)支持304 MHz~915 MHz的OOK和FSK解调;片内支持数据曼彻斯特解码,节省了外部微控制器解码软件系统占用的空间;具有片内定时唤醒、片脚唤醒并可设置特定帧唤醒外部MCU功能,节省系统功耗;同时支持两套系统参数配置。上述特性也使得该芯片可以应用于被动尤钥匙门禁系统(PKE)和胎压检测(TPMS)系统中。
    ◆VKSP数据协议:纯软件实现,采用1 28位AES加密,增加了安全性;本地密钥在钥匙每次的学习过程中通过伪随机数发生器产生,所以对每把钥匙的每次学习过程将产乍和存储不同的钥匙密钥,增强了保密性。
    该方案评估系统实物如图5和图6。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

自动驾驶系统系统采用先进的通信、计算机、网络和控制技术,对列车实现实时、连续控制。采用现代通信手段,直接面对列车,可实现车地间的双向数据通信,传输速率快,信息量大,后续追踪列车和控制中心可以及时获知前行列车的确切位置,使...

关键字: 自动驾驶 L4 汽车

当前全球新一轮科技革命和产业变革蓬勃发展,汽车与能源、交通、信息通信等领域有关技术加速融合,电动化、网联化、智能化成为汽车产业的发展潮流和趋势。智能汽车融汇新能源、新材料和互联网、大数据、人工智能等多种变革性技术,推动汽...

关键字: 智能汽车 汽车 新能源

随着人工智能产业的深入发展,智能汽车开始步入人们的视野。在人们出行多元化的今天,智能汽车是未来汽车发展的必然趋势。所谓智能汽车,就是汽车与人工智能技术的深度融合,这种类型的汽车可以有效避免疲劳驾驶,使汽车更加个性、灵活,...

关键字: 智能汽车 汽车 人工智能

目前,随着信息技术的不断转型与升级,加快了汽车设计的脚步,智能汽车技术不仅使人们日常驾驶行为习惯发生明显改变,同时使交通的安全性、可靠性得到有效保障,在一定程度上减少汽车尾气对自然生态环境造成的直接影响,为城市规划、交通...

关键字: 智能汽车 汽车 人工智能

近年来,世界主要汽车大国纷纷加强新能源汽车战略谋划、强化政策支持、完善产业布局,新能源汽车已成为全球汽车产业转型发展的主要方向和促进世界经济持续增长的重要引擎。2021年,全国新能源汽车实现产量354.5万辆,销量352...

关键字: 新能源 汽车 引擎

互联网、信息技术等技术的进步改变了各行各业的发展模式,尤其是作为技术型与集约型产业,汽车行业迎来了新的发展时期。近年来,智能网联汽车逐步成为汽车发展的主要趋势,虽然取得了一定的发展成果,但是还存在一些发展劣势,因而,未来...

关键字: 智能网联 汽车 智能化

实现“双碳”目标将加快推动我国汽车产业发展方式的转变,尤其是推动以新能源汽车为代表的新产业、新业态、新模式的发展,为我国智能网联汽车产业实现从跟跑、并跑到领跑,增强汽车产业的国际竞争力,创造新的历史契机。

关键字: 智能网联 汽车 新能源

新一轮科技革命和产业变革方兴未艾,科学技术是促进城市持续发展的强大动力,智能网联汽车的发展是一个跨领域、跨行业融合发展的结果,需要政府各部门、汽车企业、科技企业以及产业链上下游加大协同的力度,同向发力,充分利用数字化、网...

关键字: 智能网联 汽车 智能化

北京——2022年10月19日 在“2022亚马逊云科技中国峰会”上,亚马逊云科技宣布将在2021年“汽车行业创新加速计划”的基础上,升级推出“汽车行业创新加速计划”2.0。在新的阶段,亚马逊云科技将利用自身在技术、服务...

关键字: 亚马逊云科技 汽车

新能源汽车市场在2022年有望达到600万辆规模,为芯片产业带来较大的发展机遇。2022年,我国芯片供应比去年有所缓解,但仍紧张。中期来看,部分类别芯片存在较大结构性短缺风险,预计2022年芯片产能缺口仍难以弥补。这两年...

关键字: 新能源 汽车 芯片

模拟

31144 篇文章

关注

发布文章

编辑精选

技术子站

关闭