当前位置:首页 > 模拟 > 模拟
[导读]激光模块需对雪崩光电二极管(APD)的非线性响应进行补偿。本应用笔记以DS1875 SFP控制器为例,探讨如何使用Maxim的光控制器完成非线性补偿。APD特性 光模块采用基于雪崩光电二极管(APD)的光接收器支持高灵敏度设计。

激光模块需对雪崩光电二极管(APD)的非线性响应进行补偿。本应用笔记以DS1875 SFP控制器为例,探讨如何使用Maxim的光控制器完成非线性补偿。

APD特性
光模块采用基于雪崩光电二极管(APD)的光接收器支持高灵敏度设计。

从APD接收到的反馈呈非线性(平均接收功率),这一非线性特性为优化控制激光器模块带来一定困难,典型的APD非线性特性如图1所示。


图1. 典型的APD响应显示了非线性特性

为了保证精准操作,需要对APD的非线性进行补偿。补偿后可以为SFP控制器模块提供线性反馈,提高系统稳定性。补偿后的APD响应如图2所示。


图2. 该平均曲线显示了所期望的典型响应,生产过程中对响应中微小变化的补偿是不可行的。

 

使用RSSI修正非线性
Maxim的光控制器,如DS1875,能够补偿APD的非线性。

DS1875的一个输入通道(MON3)有两个工作区(细调和粗调)配置,每个区域都有其独立的量程和偏置,用于校准接收到的功率信号的非线性。校准通过对APD二极管的非线性响应进行分段线性近似,拟合完成。

除了提供两个独立的工作区,DS1875也可在细调区域对ADC转换结果进行右移操作。即使输入信号不能完全覆盖输入范围,通过右移操作也可提高转换精度。

 

滞回的重要性
在给定的交叉点,DS1875根据输入信号的幅度自动地在两个工作区之间切换。在交叉点提供滞回,当从粗调切换到细调时,切换点会发生变动。这能保证器件不会在两个工作区间来回触发,造成不稳定。

交叉点会根据针对细调范围的右移位设定的不同而改变,表1列出了不同的右移设置下交叉点的改变。需要注意的是,DEC栏到滞回(Hysteresis)栏对应的变化值。

表1. 右移时的交叉点设置

 

Right Shift HEX DEC Hysteresis
0 FFF8 65528 61440
1 7FFC 32764 30720
2 3FFE 16382 15360
3 1FFF 8191 7680
4 FFF 4095 3840
5 7FF 2047 1920
6 3FF 1023 960
7 1FF 511 480
校准DS1875
DS1875输入端MON3的两个工作区必须进行校准,这样才能准确拟合所要求的APD响应。按照下面过程进行校准,可以得到两个不同工作区的量程和偏置值。

 

对细调和粗调工作区进行配置,以保证每个工作区的实际响应为线性。写入工厂预设值,使响应为线性特性,同时将精调范围的右移位设为3。


在MON3P接入两个输入(“a”dB和“b”dB)。使用内部工厂校准值,测量MON3转换数值。两个输入已配置成粗调范围使用“a”dB,细调范围使用“b”dB。输入可选择任何两个点,只要一个在细调区,另一个在粗调区。根据测试得到的误差,测量需进行再评估,直到得到最佳的分段线性拟合。


步骤2得到的数值与期望用来补偿APD线性响应的数值会有差别。所有细调和粗调区的量程和偏置也需要校准,这样才能准确匹配期望值。将两个被测值作为“x”,这两个点的期望输出作为“y”值。


计算细调区ADC的量程和偏置。该计算使用两个点,第一个点为第一次计算中(步骤2)的b dB输入测量的x值和y值(x1, y1);另一个点是(0, 0)点(x2, y2)。这个(0, 0)点是一个假设点,只需使用2个数据点即可得出量程和偏置。如果(0, 0)不适合所期望的响应,那么用户可以使用另一个数据点。

计算由下式完成:
y = m_fine × x + c_fine
其中,m_fine代表量程,c_fine代表偏置。

使用点(x2, y2),得到:
c_fine = 0
使用点(x1, y1),得到:
m_fine = y1/x1
为了得到所期望的响应,需找到最接近的右移位。将期望的输出(点b dB的y值)与表1的DEC值相比较。最接近上述期望输出的DEC值将被用作x值。与之相应的(y)值可以用上面的m_fine和c_fine推算,该点即为(x2, y2)。


使用(x2, y2)交叉点的值和b dB点(x3, y3)数值,由下式计算粗调区ADC的量程和偏置:
y = m_coarse × x + c_coarse
将偏置(c_fine和c_coarse)装载到DS1875相应的寄存器。注意,如果这个偏置为负值,那么将其2进制补码写入寄存器。


现在要分别整理细调和粗调区的量程,读出两个输入的期望值(a dB和b dB)。


基于修正过的响应(使用新的量程和偏置值)和期望的响应,可生成一条误差曲线(图3所示)。误差曲线根据两个点(a和b)的位置变化而变化。第一段斜线代表细调区的误差;第二段斜线代表粗调区的误差。误差大小可以根据客户要求,通过改变这两个点的位置进行调整。

 

结论
新的细调和粗调范围可用来检查器件是否近似拟合得到所期望的响应,图3为图2响应的拟合结果。


图3. 这个误差曲线分别显示了使用新的量程和偏置进行修正的响应和所期望的响应

所期望的响应特性与计算得到的响应特性的误差如图4所示。


图4. 计算得到的响应与所期望响应的误差
 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在电子电路设计中,确保电源的稳定和安全至关重要。LTC4365 作为一款出色的过压(OV)、欠压(UV)以及反向极性故障保护控制器,在众多领域得到了广泛应用。其能够为电源输入电压可能出现过高、过低甚至负值的应用场景提供可...

关键字: 控制器 栅极 输出电压

在PoE(以太网供电)网络中,PSE(供电设备)与PD(受电设备)的协作质量直接决定着系统的稳定性与能效。从电源预算的精准分配到动态负载的实时响应,从电磁兼容的精细设计到热管理的量化控制,每个环节的协同优化都至关重要。本...

关键字: PSE PD

ZCC3790 作为一款同步 4 开关升降压电压 / 电流调节器控制器,展现出了强大的性能。它能够在输入电压高于、低于或等于输出电压的复杂情况下,精准地调节输出电压、输出电流或输入电流。其恒定频率、电流模式架构赋予了它灵...

关键字: 升降压 控制器 宽电压

2025年8月12日 – 专注于引入新品的全球电子元器件和工业自动化产品授权代理商贸泽电子(Mouser Electronics) 是Phoenix Contact解决方案的全球授权代理商。贸泽供应超过93,000种可订...

关键字: 楼宇自动化 控制器 连接器

在之前的文章“为机器人技术的未来发展筑牢安全防线:网络安全的作用”中,我们全面介绍了机器人控制系统面临的安全挑战。文章强调了遵守机器人行业安全标准的重要性,并探索了加强机器人控制系统保护所需的基本安全能力。此外,我们还展...

关键字: 机器人 PLC 控制器

工业4.0的核心是工厂自动化,工业机器人、自主移动机器人(AMR)和协作机器人对于实现现代工业4.0至关重要。机器人正日益智能化,协作能力不断增强,能够在有人或无人干预的情况下高效完成复杂任务。随着自动化程度和机器人使用...

关键字: 机器人 工业4.0 控制器

全新 I/O 解决方案赋予制造商更大的设计自由度,打造更智能、更具适应性更的设备

关键字: 控制器 I/O 系统

【2025年7月24日, 德国慕尼黑讯】全球功率系统和物联网领域的半导体领导者英飞凌科技股份公司(FSE代码:IFX / OTCQX代码:IFNNY)近日推出新型英飞凌ID Key系列,进一步扩展其通用串行总线(USB)...

关键字: 控制器 USB 非易失性存储器

挑战赛鼓励参与者利用 WL-ICLED 技术展示创意

关键字: LED 控制器

许多电源转换应用都需要支持宽输入或输出电压范围。ADI公司的一款大电流、高效率、全集成式四开关降压-升压型电源模块可以满足此类应用的需求。该款器件将控制器、MOSFET、功率电感和电容集成到先进的3D集成封装中,实现了紧...

关键字: 稳压器 控制器 MOSFET
关闭