当前位置:首页 > 模拟 > 模拟
[导读]摘要:在集成微电容式传感器的研究中,由于敏感电容值的变化量非常微小,其接口电路的研究对传感器性能提升是至关重要的。设计了一种基于电流镜原理检测的微电容式传感器接口电路,电路由电容转换电压电路、减法器电

摘要:在集成微电容式传感器的研究中,由于敏感电容值的变化量非常微小,其接口电路的研究对传感器性能提升是至关重要的。设计了一种基于电流镜原理检测的微电容式传感器接口电路,电路由电容转换电压电路、减法器电路、脉冲电路、缓冲器电路等组成。基于0.18 μm CMOS工艺库对电路进行设计仿真,结果表明该电路便于与敏感电容兼容,输出电压与敏感电容成线性关系,其检测精确度高、范围广。

0 引言

随着微电子技术与微机械加工技术的快速发展,传感器的微型化、集成化、智能化等成为了研究趋势。基于CMOS MEMS技术将传感部分与接口电路等在同一芯片完成,有利于大批量生产降低成本、减小器件尺寸、提高传感器的灵敏度、增强抗干扰能力等。

集成微电容式传感器由于电路集成度高、制程兼容性好等优点被广泛应用在集成传感器的研究中,如电容式加速度传感器、电容式湿度传感器、电容式压力传感器、电容式气体传感器等。其工作原理是将外界变化的加速度、湿度、压力等非电量转换为电容值的变化,然后再将其转换为易于处理的电学量。

本文研究一种基于电流镜原理检测的微电容式传感器接口电路,将敏感电容变化的电容值转换为输出电压值的变化。电路便于与敏感电容兼容,且输出电压与敏感电容成线性关系。本电路可以避免利用开关电容电路原理进行检测时由开关切换电荷注入所产生的误差,且电路可根据敏感电容值的范围进行调节,检测精确度高。

1 电路工作原理

将随外界物理量变化而改变的敏感电容值转换为电压值的变化是接口电路设计中普遍采用的方式之一。其中,利用开关电容电路原理将敏感电容值转换为电压值较为常用,这种接口电路具有输出电压线性度高、与CMOS工艺兼容、温度特性好等优点。但是由于开关切换时电荷注入会产生误差,引起输出偏差,因此,设计时采用基于电流镜原理进行检测,电路如图1所示。电路通过分时工作的方式,采用对电容的充放电,将电容转换为电压,实现电容到电压信号的读出。

如图1所示,Cs为对外界非电量敏感电容,Cref为参考电容。当M1管和M2管工作在饱和区时,则:

若忽略沟道长度调制的影响,由于M1管的栅极和漏极电位相同,且M1管处于饱和区,因此对敏感电容Cs充电一段时间t后,Cs上的电压为:

设L1=L2,则:

因此,由公式推导可知输出电压Vm与敏感电容和参考电容的比值成线性关系,且电路可根据参考电容的不同对其敏感电容值的范围进行调节。

2 电路设计

基于电流镜原理所设计的微电容式传感器接口电路由脉冲电路、电容转换电压电路、缓冲器电路、减法器电路、反相器电路等组成,电路框图如图2所示。

控制敏感电容和参考电容充放电的脉冲信号由脉冲电路产生。在电容到电压的转换电路中,由于电流镜只有在输出电压Vm

设计时将MOS管M1和M2的宽长比设为相同,即(W/L)1=(W/L)2。由式(10)可知,输出电压Vo与Cs/Cref成线性关系。当参考电容值一定时,输出电压随敏感电容值的变化而变化,因此,可以将随外界待测物理量变化而变化的电容值转换为易于后期电路处理的电压值的变化。

在基于电流镜原理实现的接口电路设计中,运放电路的设计是一个重要的单元,因此电路的设计中也应完成运放电路的设计。运放电路如图4所示。电路由偏置电路、差分输入级和增益放大级三部分组成,并采用米勒补偿作为频率补偿。

控制敏感电容和参考电容充放电的脉冲信号CP1和CP2如图5所示。

3 电路仿真结果与分析

利用Cadence spectre仿真器和TSMC公司的0.18μm 3.3V CMOS库文件,仿真验证所设计的电路性能。

在低频范围中得到运放的开环增益为63.3 dB,单位增益带宽29.17MHz,相位裕度为65.24,共模抑制比85.2 dB,电源抑制比87 dB,功耗1.81mW。其中开环增益、单位增益带宽和相位裕度如图6和图7所示。

当参考电容Cref=200fF,敏感电容Cs=180fF,接口电路的仿真结果如图8所示。

当参考电容一定时Cref=200fF,敏感电容Cs=190fF~100fF变化,输出电压Vo的仿真结果如图9所示。

如图9,当敏感电容Cs=190fF时,输出电压VT(“/vo”)<0>为2.54V;当敏感电容Cs=180fF时,输出电压VT(“/vo”)<1>为2.44V;当敏感电容Cs=160fF时,输出电压VT(“/vo”)<3>为2.24V;当敏感电容Cs=140fF时,输出电压VT(“/vo”)<5>为2.035V;当敏感电容Cs= 120fP时,输出电压VT(“/vo”)<7>为1.83V;当敏感电容Cs=100fF时,输出电压VT(“/vo”)<9>为1.62V。

因此,由图9可知,当敏感电容值线性变化时,输出电压的变化值也为线性,该对应关系与式(10)相符。当参考电容为Cref=200fF时,敏感电容Cs=190fF~150fF之间变化线性度好,其电容到电压转换的分辨率为100mV/10fF。该接口电路中也可以通过改变参考电容值的大小,以检测不同的敏感电容值。

4 结束语

针对微电容式传感器接口电路设计了一种基于电流镜原理的检测电路,电路利用CMOS工艺实现,将敏感电容变化的电容值转换为输出电压值的变化。通过仿真验证,结果表明本电路仿真结果与理论推导相符,其输出电压与敏感电容的线性度高,检测范围广,利于后期电路处理。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在电子电路设计中,确保电源的稳定和安全至关重要。LTC4365 作为一款出色的过压(OV)、欠压(UV)以及反向极性故障保护控制器,在众多领域得到了广泛应用。其能够为电源输入电压可能出现过高、过低甚至负值的应用场景提供可...

关键字: 控制器 栅极 输出电压

阻抗匹配(Impedance matching)是微波电子学里的一部分,是高频设计中的一个常用概念,主要用于传输线上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。信号源内阻与所...

关键字: 电流 阻抗

同步整流和非同步整流是开关电源中两种不同的整流方式,它们的主要区别在于续流回路中使用的元器件及其控制方式。

关键字: 电流 开关电源

电阻,这个看似简单的物理概念,实际上蕴含着丰富的科学内涵。在接下来的时间里,我将向大家阐述电阻的作用,以及它在科技发展中的重要性。

关键字: 电阻 电流

在电子系统中,电源如同人体的心脏,为各个元器件提供持续稳定的能量。而电源系统电流的合理分配,更是决定了整个系统能否稳定、高效运行的关键因素。不合理的电流分配,可能导致某些元器件供电不足,无法正常工作;也可能使部分器件电流...

关键字: 电源系统 器件 电流

电容式传感器是以各种类型的电容器作为传感元件,将被测物理量或机械量转换成为电容变化量变化的一种转换装置,实际上就是一个具有可变参数的电容器。

关键字: 电容式传感器

谐波,作为一种电力系统中常见的现象,指的是电压或电流波形偏离正弦波的畸形部分。其产生源于电力系统中非线性负荷的存在,这些负荷在运行过程中会引发电流或电压波形的畸变。谐波的特性包括频率为基波频率的整数倍、正负序性以及幅值与...

关键字: 电流 谐波

谐波的产生电网谐波主要源自三个方面:首先是发电电源质量不佳引发的谐波;其次,输配电系统在运行过程中也可能产生谐波;最后,用电设备如变频器、整流器等在使用时会产生大量谐波,成为谐波产生的主要源头。

关键字: 电流 谐波

三极管是一种半导体器件,通常由三层半导体材料构成,分为NPN型和PNP型两种结构。其工作原理基于电流控制或电压控制机制。对于双极性晶体管(BJT),基极电流决定了集电极电流;而对于场效应晶体管(FET),栅极电压则调节漏...

关键字: 三极管 电流

在现代电子设备中,开关电源因其高效、紧凑等优点而得到广泛应用。其中,反激式开关电源以其简单的拓扑结构和较低的成本,在中小功率应用场景中占据了重要地位,如手机充电器、LED 驱动电源等。然而,反激式开关电源输出电压中存在的...

关键字: 纹波 反激式 输出电压
关闭