当前位置:首页 > 消费电子 > 消费电子
[导读]评估和设计支持电路评估板CN-0263 电路评估板(EVAL-CN0263-EB1Z)设计和集成文件原理图、布局文件、物料清单电路功能与优势图1. 鲁棒的差分视频接收器,采用ADA4830-1和ADV7180(未显示所有连接和去耦)图1所示电路提供

评估和设计支持

电路评估板

CN-0263 电路评估板(EVAL-CN0263-EB1Z)

设计和集成文件

原理图、布局文件、物料清单

电路功能与优势

视频接收器,采用ADA4830-1和ADV7180(未显示所有连接和去耦)" width="500" height="470" />

图1. 鲁棒的差分视频接收器,采用ADA4830-1和ADV7180(未显示所有连接和去耦)

图1所示电路提供了极为鲁棒的解决方案,集成过压(电池短路[STB])保护,可在恶劣环境下接收CVBS视频信号。它采用低成本、低功耗、单极性、差分接收器ADA4830-1 ,可在ADV7180完成数字化前将全差分或伪差分(地参考单端)视频信号转换为单端信号。

ADA4830-1用于消除共模噪声和相位噪声,噪声是由于输入视频信号源与接收电路之间存在地电位差造成的。更重要的是,ADA4830-1和ADV7180 的组合提供了可在恶劣汽车环境下工作的非常鲁棒的输入特性,还可保护与检测电池短路事件,并符合汽车制造商严格的要求。

该鲁棒的接收器电路使用ADA4830-1和ADV7180 ,符合传统、经验证的隔离/独立式低压集成电路架构,例如来自外部并使用放大器电路进行信号调理和保护的ADV7180 。

ADA4830-1(单通道)是一款单芯片高速差动放大器,集成最高18 V的输入过压(电池短路)保护功能,提供宽输入共模电压范围和出色的ESD鲁棒性。它设计用作差分或伪差分CVBS及其它高速视频信号的接收器,适合在恶劣的高噪声环境下工作,如汽车信息娱乐和视觉系统等。

ADA4830-1兼具高速和精密特性,可以精确再现CVBS视频信号,同时抑制不需要的共模误差电压。

凭借STB保护/检测、鲁棒的ESD耐受性和宽输入共模电压范围,ADA4830-1可用作后视摄像头和后座娱乐等系统内的汽车模拟视频接收器

ADV7180和ADA4830-1完全符合汽车应用标准,非常适合汽车应用中的信息娱乐系统和视觉安全系统。ADV7180和ADA4830-1提供非常小的LFCSP封装,适合空间受限的应用。

电路描述

ADA4830-1是一款单芯片高速差动放大器,专为汽车应用而设计。该设计以传统4 电阻差动放大器为基础,经优化以避免增强该标准放大器应用电路时容易犯的错误。

当检测到输入过压条件时,集成到ADA4830-1 的电池短路保护功能利用快速开关电路,将内部电压节点箝位并保持在安全电平。这种保护使得ADA4830-1 的输入可以直接连接到远程视频源,如后视摄像头等,而不需要昂贵的串联大电容。

像ADV7180等大多数视频解码器都建立在极低的电压处理上,因此输入电压范围有限。ADA4830-1 的信号增益为0.5 V/V ,设计用于将视频信号保持在视频解码器允许的输入范围内,通常为1 V p-p或更低。

输入共模电压范围

在一个具有0.5 V/V增益的标准4 电阻差动放大器中,输入共模(CM)范围是内核放大器CM范围的三倍。ADA4830-1的输入共模被扩展至超过地电压±8.5 V(5 V 电源) 。这种极宽的共模电压范围可让ADA4830-1和ADV7180在很大的共模偏置和噪声下工作,而对图像质量不产生任何不利影响。

线路诊断

图1所示的ADA4830-1/ ADV7180组合通过连接ADA4830-1上的STB输出至ADV7180 的其中一个GPIO端口而具有电池短路线路诊断功能。在电池短路事件发生期间,STB输出 为逻辑低电平信号。ADV7180读取该低电平并产生一个可被系统微控制器读取的中断。电池短路输出标志(STB引脚)功能与电池短路保护无关。它的作用是表示每个输出的过压状态。由于是被动提供保护,因此始终有效;标志仅表示目前是否发生故障而已。

输入ESD保护

保护ADA4830-1输入的架构采用了双向非对称闭锁电压的全新技术。它不受电池短路影响,并且具有超过8 kV HBM等级的ESD鲁棒性。对于高达15kV的额外ESD保护,推荐使用外部瞬态抑制器。

共模噪声抑制

ADA4830-1集成的片内电阻内部匹配良好,增加了宽频率范围的共模抑制(CMR)性能。图2表示ADA4830-1 CMR 与频率的关系,低频时的典型值为65 dB ,可在共模噪声较大的情况下恢复视频信号。

图2. 不同输入共模电压下的CMR与频率响应的关系

共模误差,无论是直流偏置还是交流信号,都会降低视频图像质量。图3和图4显示白色背景下的单个巨大黑色条纹。图3表示500 kHz 、1 V p-p共模噪声信号对视频图像质量的影响。图4表示加入了ADA4830-1输入级以去除共模噪声的增强视频图像质量。

图3. 加入1 V p-p、500 kHz共模噪声、旁路ADA4830-1后,视频显示的黑色条纹

图4. ADA4830-1抑制1 V p-p、500 kHz共模噪声后,视频显示的黑色条纹

ADV7180 自动检测与全球NSTC 、PAL和SECAM标准兼容的标准模拟基带电视信号,并将其转换为与8位ITU-R.656接口标准兼容的4:2:2分量视频数据。针对具有真8位数据分辨率的消费电子应用,精确的10位模数转换可以提供专业品质的视频性能。三个模拟视频输入通道接受标准复合视频信号、S-视频信号或分量视频信号,支持较宽范围的消费视频源。自动增益控制(AGC)和箝位复位电路使输入视频信号峰峰值范围可达到1.0 V。

印刷电路板(PCB)布局考量

在任何注重精度的电路中,必须仔细考虑电路板上的电源和接地回路布局。PCB应尽可能隔离数字部分和模拟部分。本PCB采用4层板堆叠而成,具有较大面积的接地层和电源层多边形。有关布局和接地的详细论述,请参见MT-031指南;有关去耦技术的信息,请参见MT-101指南。

通过10 μF和0.1 μF电容对ADV7180的电源进行去耦。此外,采用0.1 μF和22 μF 电容对ADA4830-1进行去耦,以适当抑制噪声并减小纹波。这些电容应尽可能靠近相应器件,以确保0.1 μF 电容具有低ESR值。对于所有高频去耦,建议使用陶瓷电容。

确保电源走线尽可能宽,以提供低阻抗路径,并减小电源线路上的毛刺效应。通过数字地将时钟及其它快速开关数字信号屏蔽起来,使之不影响电路板的其它器件。

常见变化

若需要多个通道,则ADA4830-1 提供2通道版本,即ADA4830-2 。

电路评估与测试

该电路使用EVAL-CN0263-EB1Z 电路板,其中包含要评估的电路,如本笔记所述。电路板还包括ADV7391视频编码器,可用于重建输入视频信号。若需有关输出电路的介绍,请参考CN-0264 电路笔记。Cypress USB微控制器用于配置EVAL-CN0263-EB1Z板并向/从该板加载软件。

设备要求

需要以下设备:

• 带USB端口的Windows® XP 、Windows Vista®(32位)或Windows® 7(32位)PC。

•  Astrodesign VG-828可编程视频信号发生器。

• 用作单通道和共模误差电压的视频源。本电路笔记中的测试采用AD8137差分放大器,它将单端视频从VG-828转换为差分视频,并为AD8137 的VOCM 输入施加500kHz 、1 V p-p共模信号。加入共模电压情况下的输出差分信号施加于评估板的输入端。

•  Hewlett-Packard 3314A 函数发生器。

•  Agilent E3631A 电源。

• EVAL-CN0263-EB1Z 电路板。

•  CN-0263评估软件。

• 电源:7.5 V或7.5 V壁式电源适配器。

• 视频显示器,用于观察EVAL-CN0263-EB1Z 电路板的模拟视频输出。

开始使用

将CN-0263评估软件光盘放入PC ,加载评估软件。打开我的电脑,找到包含评估软件光盘的驱动器,打开Readme文件。按照Readme文件中的说明安装和使用评估软件。

功能框图

电路框图参见本电路笔记的图1,电路原理图参见EVAL-CN0263-EB1Z-SCH.pdf文件。此文件位于CN0263设计支持包中。

设置

在断电情况下,将一个7.5 V 电源连接到电路板上的+7.5 V和GND引脚。如果有7.5 V壁式电源适配器,可将其连接到板上的管式连接器,代替7.5 V 电源。将USB 电缆连接到PC上的USB端口。此时请勿将该USB 电缆连接到板上的微型USB连接器。

测试

为连接到EVAL-CN0263-EB1Z 电路板的7.5 V 电源(或壁式电源适配器)通电。启动评估软件,并通过USB 电缆将PC连接到PCB上的微型USB连接器。

有关如何使用评估软件来捕捉数据的详细信息,请参阅CN-0263评估软件的Readme文件。

 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭