当前位置:首页 > 工业控制 > 工业控制
[导读] 概述 Luminary Micro在Stellaris系列微控制器的部分产品中提供了模数转换器(ADC)模块。ADC的硬件分辨率为10位,但由于噪音和其它使精度变

概述

Luminary MicroStellaris系列微控制器的部分产品中提供了模数转换器(ADC)模块。ADC的硬件分辨率为10位,但由于噪音和其它使精度变小的因素的影响,实际的精度小于10位。本应用文档提供了一个基于软件的过采样技术,从而使转换结果的有效位数(ENOB)得到了改善。文档中描述了对输入信号执行过采样的方法,以及在精度和整个系统性能上的影响。
过采样
过采样,顾名思义就是从输入信号中采集额外的转换数据。模拟信号采样的标准约定指出:采样频率fS至少是输入信号的最高频率成分fH的两倍。这被称作奈奎斯特采样定理(Nyquist Theorem)(见等式1)。
等式1 奈奎斯特采样定理:
fS2fH
只要所选的采样频率高于fS就被看作是过采样。当过采样与平均技术相结合时,可改善ENOB。这是可以实现的,因为在将过采样的结果进行平均的同时也将量化噪音进行了平均,这样就提高了信噪比(SNR),信噪比的提高会在ENOB上产生一个直接的影响,从而改善ENOB
精度上每提高一位,必须对信号进行4倍的过采样,即过采样频率fOS与采样频率fS的关系如等式2所示:
等式2 过采样频率:
fOS=4X*fS
xENOB上需改进的位数(例如,需要改进2位,则x2)。
平均
平均操作可看作是输入信号上的一个低通滤波器,当采样数据宽度(simple size)增加时滤波器的通带变窄。有两种方法可对转换结果进行平均:常规平均和滑动平均(rolling average)。
常规平均
对输入信号进行n次采样,将采样值相加并将结果除以n,这即是常规平均。图1所示的即为常规平均。当在过采样方案中使用常规平均时,使用该技术之后,用于计算平均值的采样数据被丢弃。每次应用程序需要一个新的转换结果时,重复该处理。
在应用中,常规平均方案可理想地用于采样频率与ADC的采样率相比较小的情况。
要点:当在常规平均方案中执行n倍过采样时,有效的ADC采样率将按照相同的因子降低。例如,在对输入信号进行4倍过采样时,最大的有效ADC采样率降低为原来的1/4,即采样率为250K/sADC有效地变为62.5K/sADC
2显示的解决方案使用常规平均对输入源进行4倍过采样。在该例中,应用要求在每个t阶段(t0t1t2等等)准备好一个新值(平均操作完成)。
在使用平均技术时,因为计算后的转换结果要与上面的n个采样点对应,因此稍微有一点延迟。延迟时间使用等式3中的公式来计算:
等式3 平均后的采样延迟:
tdelay=(tSn-tS0)/2+tprocess
tS0为进行平均时第一个采样点出现的时间,tSn为最后一个采样点出现的时间。中断处理程序处理采样数据所需的时间,并被计算为供应用使用的平均tproces也被分解到等式中。 
  
滑动平均
滑动平均在平均计算中使用存放n个最近采样值的采样缓冲区,允许ADC在其最大采样率时采样(ADC采样率并不象常规平均那样减小为原来的1/n),这样它可理想地用于要求过采样和更高采样率的应用中。在未知状态中,采样缓冲区能够用有效的采样数据预先填充(通过捕获第一个实际数据点之前的n-1个采样点),也可保持为空,由应用来决定。不预先填充缓冲区的危害是前面的n-1个采样点包含无效的数据,并在滑动平均计算中产生不利的影响。如果这些影响可被应用所接受,并且如果软件能够解决前面的n-1个偏移的采样点的可能性,则可去除缓冲区填充操作。
3显示了采用滑动平均的过采样实例。图中显示的情况为:输入信号进行4倍过采样,即采样缓冲区使用4个最近的采样值来计算平均值。在该例中,应用要求在每个t时刻有一个新的采样值。在t0时刻计算第一个过采样的结果之前,采样缓冲区收集了3个采样值,这样提供给应用的第一个数据有效。
在使用滑动平均时,等式3中计算得来的采样延迟也同样适用。要点:因为必须在每次中断过程中执行采样缓冲区处理,因此使用滑动平均增加了额外的处理开销。
 
实现
Luminary MicroADC中使用采样定序器(sample sequencer)结构,它使用一次触发就可采集到高达17个不同的采样值(来自任意的模拟通道),这样过采样的实现就变得非常简单。而通过向应用提供在任意给定的时刻对多个通道进行过采样的方法,使得软件的实现也具有极大的灵活性。
下面将给出使用Stellaris微控制器的多种过采样实现。有许多方法是将采样定序器的配置、ADC触发和中断相结合来工作的。这里所举的例子焦点都集中在最常使用的技术上。
所有的实例代码都使用Stellaris系统驱动库的ADC函数。驱动库和本文档中显示的软件实例的源代码可从Luminary Micro网站:http://www.luminarymicro.com中获得。
使用驱动库函数的8倍过采样
Stellaris驱动库具有内置的允许进行高达8倍过采样的函数。该级别的过采样能够使ENOB改进大约1.4位,因此在大多数应用中已足够了。
使用驱动库的过采样函数是对输入信号进行过采样的最简单的方法。配置典型ADC转换和过采样转换的主要不同在于函数调用。过采样函数有一个ADCSoftwareOversample前缀,很容易从标准ADC函数中识别出。
一旦确定好ADC转换处理的参数(采样频率、触发源、通道、等等),写代码是非常简单的。举例:例1中的代码段即为建立一个8倍过采样的10ms周期转换(由定时器触发)的代码。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

【2024年5月13日,德国慕尼黑和斯图加特讯】随着汽车行业向软件定义汽车和新E/E架构过渡,市场对高性能硬件和强大网络安全解决方案的需求也逐渐增加。为满足这一需求,全球功率系统和物联网领域的半导体领导者英飞凌科技股份公...

关键字: 微控制器 半导体 物联网

本文针对电动两轮车自燃防控装置的开发与分析进行了研究。通过电动两轮车自燃原因分析,提出了电动两轮车的自燃防控智能装置设计思路,介绍了电动两轮车的自燃防控智能

关键字: STC89C52RC 单片机 微控制器

5月8日,中星联华技术支持总监苏水金给带来《精密测试关键技术大揭秘!》,详解中星联华超低相噪微波信号源的6大核心特色,助您快速精准测试,解决尖端测试的苛刻要求。

关键字: ADC 自动编程 相噪

【2024年5月9日,德国慕尼黑讯】信息安全与功能安全在汽车行业发挥着日益重要的作用,即便在低端微控制器应用中也不例外。与此同时,汽车制造商正在用触摸表面取代机械按钮,实现简洁的驾驶舱和方向盘。因此,电子电路的空间受到很...

关键字: 物联网 电子电路 微控制器

【2024年5月8日,德国慕尼黑讯】Rust编程语言凭借其独特的内存安全特性,已经成为汽车软件开发中C/C++的有效补充和潜在替代品。全球功率系统和物联网领域的半导体领导者英飞凌科技股份公司(FSE代码:IFX / OT...

关键字: 编译器 微控制器

2024年5月6日 – 专注于引入新品的全球电子元器件和工业自动化产品授权代理商贸泽电子 (Mouser Electronics) 即日起开售Analog Devices, Inc. (ADI) 的MAX32690微控制...

关键字: 可穿戴设备 微控制器 片上系统

【2024年4月29日, 德国慕尼黑讯】嵌入式安全被认为是物联网(IoT)应用部署的一个重要属性。英飞凌科技股份公司(FSE代码:IFX / OTCQX代码:IFNNY)近日宣布,其新型PSOC™ Edge E8x MC...

关键字: 微控制器 MCU 物联网

2024年4月26日,中国 – 服务多重电子应用领域、全球排名前列的半导体公司意法半导体 (STMicroelectronics,简称ST;纽约证券交易所代码:STM) 公布了按照美国通用会计准则 (U.S. GAAP)...

关键字: 微控制器 模拟器件

利用LogiCoA™微控制器,以更低功耗实现与全数字控制电源同等的功能

关键字: 微控制器 电源 CPU

台湾新竹 – 2024年4月23日 – 著名的微控制器供货商新唐科技公司,与全软件开发生命周期提供跨平台解决方案的全球软件公司Qt Group宣布深化合作,扩展新唐科技人机界面(HMI)平台支持「Qt for MCUs」...

关键字: 微控制器 嵌入式系统 MCU
关闭
关闭