当前位置:首页 > 单片机 > 单片机
[导读]一、定时/计数器PWM设计要点    根据PWM的特点,在使用ATmega128的定时/计数器设计输出PWM时应注意以下几点:   1.首先应根据实际的情况,确定需要输出的PWM频率范围,这个频率与控制的对象有关。如输出PWM波

一、定时/计数器PWM设计要点
  
根据PWM的特点,在使用ATmega128的定时/计数器设计输出PWM时应注意以下几点:
  1.首先应根据实际的情况,确定需要输出的PWM频率范围,这个频率与控制的对象有关。如输出PWM波用于控制灯的亮度,由于人眼不能分辨42Hz以上的频率,所以PWM的频率应高于42Hz,否则人眼会察觉到灯的闪烁。
  2.然后根据需要PWM的频率范围确定ATmega128定时/计数器的PWM工作方式。AVR定时/计数器的PWM模式可以分成快速PWM和频率(相位)调整PWM两大类。
  3.快速PWM可以的到比较高频率的PWM输出,但占空比的调节精度稍微差一些。此时计数器仅工作在单程正向计数方式,计数器的上限值决定PWM的频率,而比较匹配寄存器的值决定了占空比的大小。PWM频率的计算公式为:
  PWM频率 = 系统时钟频率/(分频系数*(1+计数器上限值))
  4.快速PWM模式适合要求输出PWM频率较高,但频率固定,占空比调节精度要求不高的应用。
  5.频率(相位)调整PWM模式的占空比调节精度高,但输出频率比较低,因为此时计数器仅工作在双向计数方式。同样计数器的上限值决定了PWM的频率,比较匹配寄存器的值决定了占空比的大小。PWM频率的计算公式为:
  PWM频率 = 系统时钟频率/(分频系数*2*计数器上限值))
  6.相位调整PWM模式适合要求输出PWM频率较低,但频率固定,占空比调节精度要求高的应用。当调整占空比时,PWM的相位也相应的跟着变化(Phase Correct)。
  7.频率和相位调整PWM模式适合要求输出PWM频率较低,输出频率需要变化,占空比调节精度要求高的应用。此时应注意:不仅调整占空比时,PWM的相位会相应的跟着变化;而一但改变计数器上限值,即改变PWM的输出频率时,会使PWM的占空比和相位都相应的跟着变化(Phase And Frequency Correct)。
  8.在PWM方式中,计数器的上限值有固定的0xFF(8位T/C);0xFF、0x1FF、0x3FF(16位T/C)。或由用户设定的0x0000-0xFFFF,设定值在16位T/C的ICP或OCRA寄存器中。而比较匹配寄存器的值与计数器上限值之比即为占空比。
  
二、 PWM应用参考设计
  
下面给出一个设计示例,在示例中使用PWM方式来产生一个1KHz左右的正弦波,幅度为0-Vcc/2。
  
首先按照下面的公式建立一个正弦波样本表,样本表将一个正弦波周期分为128个点,每点按7位量化(127对应最高幅值Vcc/2):
  F(X) = 64 + 63 * Sin(2πx/180) X∈[0…127]
  
如果在一个正弦波周期中采用128个样点,那么对应1KHz的正弦波PWM的频率为128KHz。实际上,按照采样频率至少为信号频率的2倍的取样定理来计算,PWM的频率的理论值为2KHz即可。考虑尽量提高PWM的输出精度,实际设计使用PWM的频率为16KHz,即一个正弦波周期(1KHz)中输出16个正弦波样本值。这意味着在128点的正弦波样本表中,每隔8点取出一点作为PWM的输出。
  
程序中使用ATmega128的8位T/C0,工作模式为相位调整PWM模式输出,系统时钟为8MHz,分频系数为1,其可以产生最高PWM频率为: 8000000Hz / 510 = 15686Hz。每16次输出构成一个周期正弦波,正弦波的频率为980.4Hz。PWM由OC0(PB4)引脚输出。参考程序如下(ICCAVR)。
  //ICC-AVR Application Builder : 2004-08
  // Target : M128
  // Crystal: 8.0000Mhz
  #Include
  #Include
  #Pragma Data:code
  // 128点正弦波样本表
  Const Unsigned Char Auc_SinParam[128] = {
  64,67,70,73,76,79,82,85,88,91,94,96,99,102,104,106,109,111,113,115,117,118,120,121,
  123,124,125,126,126,127,127,127,127,127,127,127,126,126,125,124,123,121,120,118,
  117,115,113,111,109,106,104,102,99,96,94,91,88,85,82,79,76,73,70,67,64,60,57,54,51,48,
  45,42,39,36,33,31,28,25,23,21,18,16,14,12,10,9,7,6,4,3,2,1,1,0,0,0,0,0,0,0,1,1,2,3,4,6,
  7,9,10,12,14,16,18,21,23,25,28,31,33,36,39,42,45,48,51,54,57,60};
  #Pragma Data:data
  Unsigned Char X_SW = 8,X_LUT = 0;
  #Pragma Interrupt_handler Timer0_ovf_isr:17
  Void Timer0_ovf_isr(Void)
  {
  X_LUT += X_SW; // 新样点指针
  If (X_LUT > 127) X_LUT -= 128; // 样点指针调整
  OCR0 = Auc_SinParam[X_LUT]; // 取样点指针到比较匹配寄存器
  }
  Void Main(Void)
  {
  DDRB |= 0x10; // PB4(OC0)输出
  TCCR0 = 0x71; // 相位调整PWM模式,分频系数=1,正向控制OC0
  TIMSK = 0x01; // T/C0溢出中断允许
  SEI(); // 使能全局中断
  While(1)
  {……};
  }
  
每次计数器溢出中断的服务中取出一个正弦波的样点值到比较匹配寄存器中,用于调整下一个PWM的脉冲宽度,这样在PB4引脚上输出了按正弦波调制的PWM方波。当PB4的输出通过一个低通滤波器后,便得到一个980.4Hz的正弦波了。如要得到更精确的1KHz的正弦波,可使用定时/计数器T/C1,选择工作模式10,设置ICR1=250为计数器的上限值。

 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在数字化电源设计浪潮中,数字电源控制芯片的选型直接决定了系统的效率、动态响应与智能化水平。从PWM分辨率、环路补偿灵活性到通信接口兼容性,工程师需在性能、成本与开发周期间找到最优解。本文结合TI、ADI、Infineon...

关键字: 数字电源 控制芯片 PWM

在电力电子技术飞速发展的今天,开关电源凭借高效、小型化、轻量化等优势,广泛应用于通信、计算机、工业控制等领域。而三端 PWM 开关作为开关电源的核心控制部件,其性能直接影响着开关电源的整体表现。本文将深入探讨三端 PWM...

关键字: PWM 开关电源 控制器

Holtek推出新一代无刷直流电机 (BLDC) 控制专用单片机 HT32F65233。采用 Arm® Cortex®-M0+ 低功耗内核, 具备 2.5 V~5.5 V 宽电压操作。系统电压为 5 V 时,可获得更高的...

关键字: BLDC单片机 电机驱动 计数器

PWM(脉宽调制)调速系统是现代电机控制中广泛采用的一种技术,它通过改变脉冲信号的占空比,实现对电机转速的精确控制。这种技术不仅具有调速范围广、精度高、响应速度快等优点,而且能够显著降低电机运行时的能耗和温升,提高系统的...

关键字: PWM 电机

PWM小负载情况下的效率相对较低,而PFM则存在其局限性,它所能支持的输出电流较小,且电感的电流呈现线性上升趋势。此外,PWM调制方式具有较小的纹波电压,且其开关频率保持稳定,这使得噪声滤波器的设计更为简单,同时也简化了...

关键字: PWM PFM

PWM(Pulse Width Modulation,脉冲宽度调制)是一种通过改变脉冲宽度来控制信号的技术‌。PWM通过调节脉冲的宽度(即占空比),实现对电压或电流的精细控制,从而满足各种应用需求。

关键字: PWM 信号

在我们之前的LED亮度控制项目的基础上,我们现在将进一步创建一个动态的LED灯光秀。使用PWM和亮度的定时变化,我们将创建平滑的过渡,淡出和效果,使LED在视觉上引人入胜。让我们让LED焕发生机吧!

关键字: LED PWM USB ESP-12F

你可能会想象他们使用先进的人工智能相机来计算访客人数,但实际上,一个简单的基于传感器的系统就能有效地完成这项工作!通过在入口和出口点放置红外传感器,这些系统检测移动方向并保持准确计数。不需要花哨的技术。

关键字: Arduino IR传感器 计数器

LED照明技术不断演进,调光技术作为提升用户体验、实现节能目标的核心环节,正经历着从传统模拟控制向数字化、智能化转型的关键阶段。其中,PWM调光、模拟调光与0-10V调光作为主流技术路线,在应用场景、性能表现及系统设计层...

关键字: 数字调光技术 PWM 模拟调光

由于PWM变换器具有功率因数高、可同时实现变频变压及抵制谐波的特点,因此在交流传动及其他能量变换系统中得到广泛应用。

关键字: PWM 变换器
关闭