当前位置:首页 > 单片机 > 单片机
[导读]磁性编码器输出信号电子细分研究的现状和意义在数字式传感器中,磁性编码器是近几年发展起来的一种新型电磁敏感元件。磁性编码器具有不易受尘埃和结露影响、结构简单紧凑、响应速度快(可达 500~700kHz),体积小巧等

磁性编码器输出信号电子细分研究的现状和意义

在数字式传感器中,磁性编码器是近几年发展起来的一种新型电磁敏感元件。磁性编码器具有不易受尘埃和结露影响、结构简单紧凑、响应速度快(可达 500~700kHz),体积小巧等优点,同时利用磁性编码器可将多个元件精确地排列组合从而构成构成新功能器件和多功能器件。由于磁性编码器具有上述诸多优点,因而近年来在高精度测量和控制领域中的应用不断增加,作为一种重要工具,磁性编码器已成为必不可少的组成部分,其市场需求量每年以20%~30% 的速度增长。在高速度、高精度、小型化、长寿命的要求下,在激烈的市场竞争中,磁性编码器以其突出特点而独具优势,成为发展高技术产品的关键之一。在磁性编码器的研制生产方面,提高磁性编码器的分辨率和小型化现已成为各国研究发展的重点。

要提高编码器的分辨力必须增加其磁极数,一方面会增加传感器的成本,另一方面会因编码器体积的增大而影响其应用。因此对磁性编码器的输出信号进行二次细分就显得十分必要。

编码器信号信分的方案主要分为硬件细分和软件细分两类。硬件细分虽然可以得到较快的响应速度和实时输出的细分信号,但要实现较高的分辨率需要较高的成本。软件细分虽然在实时性存在一定缺陷,但可以在较小成本投入下获得较高的分辨率,并可以根据需要灵活设定分辨率。

本文将探讨利用成本较低的单片机系统实现磁性编码器信号细分的算法和实现信号实时输出的方案。本系统的设计思想是:根据两采样点之间的机械角度和细分精度计算出两个采样点之间应输出的脉冲的数目,并在系统的控制下输出,从而实现信号细分的目的。因此信号细分方案实际上是由旋转机械角度的计算和细分脉冲的输出控制两部分组成的。

旋转角度测量方案和硬件电路实现

系统中采用的磁性编码盘能够输出两路正交的正弦信号,编码器每旋转一周,可输出8个连续的正弦波。由于电机每旋转一周对应360度的机械角度,因此每个正弦波对应45度的机械角度,而每个正弦波又对应360度的电角度,因此正弦波90度的电角度的变化量对应磁性编码器11.25度机械角度的变化。

编码盘输出的是两路正交的正弦信号,而在正弦信号的一个单调区间中,信号的幅值和编码器的机械位置是一一对应的,于是可以通过测量信号的幅值转换成对应的角度信号,从而实现对磁编码信号的细分。

构造近似三角函数 ,构造函数的波形如图1所示。

 

由波形图可以看出,新构造的函数以90度的电角度为周期(对应机械角度为11.25度)。如果相邻两采样点在一个周期内,则可按照公式计算编码器的机械位置;如果相邻两采样点不在一个周期内,则只需在式1的计算结果上加上N×11.25即可(N为两采样点之间的周期数)。采用这样的构造函数可以大大简化程序设计,从而提高系统的实时性。

电路结构框图

系统电路结构框图如图2所示。两路正弦信号通过编码电路生成与正弦波相对应的编码信号,CPU可以根据编码信号对信号的整数周期进行计数。

由编码器生成的编码信号控制多路开关实现两路输入信号之间的切换,以实现当 =N×90o(N=1,3,5,……)时互换两路输入信号的功能。采样保持器和A/D转换器在CPU的控制下,对同一时刻的两路正弦信号同时进行采样,并对采样保持器保持的信号进行A/D转换,转换后的数据经8255传输至CPU。

        图2 信号细分硬件电路图

细分方案软件部分设计

电子细分方案软件流程图如图2所示。

在脉冲的输出控制上需要解决如下两个问题:如何输出细分脉冲以及如何控制细分脉冲的输出速率。

编码盘的转速变化是连续的,不会发生突变,因此可以近似认为在一段极短的时间内,电机的转速是恒定的,在此时间段内也就完全可以按照等时间间隔输出脉冲。假设电机的速度响应时间为100毫秒,在恒定加速度下达到1000转/分的转速,程序的执行周期为3000微秒,在一个程序周期中,按匀速处理产生的角度误差最大不超过0.27度,也就不会导致脉冲的误输出,完全可以保证精度要求。按照恒定速率在极短的时间内输出细分脉冲可以大大简化程序设计,并可以大幅度提高系统的实习响应性能。

由于细分脉冲数目必须要等到下一次采样完成后才能确定,因此脉冲的输出在时间上必然会滞后一个程序周期。如果设定程序执行周期为3毫秒,按编码盘每分钟旋转1000转,每转输出1000个细分脉冲计算,则输出信号最多会产生50个脉冲的滞后,相当于18o的机械角度误差。如果编码盘的转速增加,该误差会变得更大。同时,由于程序的执行周期不是一个固定值,因此由此所产生的信号滞后也将是一个变化的值。如果等到下一次的采样完成后才输出脉冲,则细分误差会比较大,且无法控制。因此细分脉冲不能等到应输出脉冲数目计算完成后才进行。

为了解决以上两个问题,可以采用定时中断控制脉冲的输出。首先根据需要输出的脉冲数目计算出输出脉冲的时间间隔,以此时间间隔作为定时时间常数控制细分脉冲的输出。这样一方面可以保证脉冲输出和输出脉冲计算的同步进行;另一方面也可以通过定时器控制脉冲输出的速率,从而使得细分脉冲在最大程度上实现了实时输出。

为了进一步简化程序设计,可以将程序执行周期设定为固定值,采用定时程序对程序的执行进行监控,以保证每一个程序的执行周期都为设定值。这样就可以建立查询表格,根据应输出的细分脉冲的数目直接确定出对应的定时时间常数。如此,将复杂的浮点运算程序简化为简单的查表程序,缩短了程序执行周期,保证了细分脉冲输出的实时性。

 

结论:

以上设计思想在编码器信号细分系统设计中均得以应用,并成功实现了对编码器输出正弦波信号的1000细分,从实践上证明了利用低成本的单片机系统完全可以在低分辨力的编码器基础上得到较高的分辨率。

参考文献:
1、谷云彪等.提高光电编码器分辨率的位置细分方法的研究.
2、电磁元件与特种器件,中国惯性技术学报,1996年第4卷第2期
3、郑远开等.高分辨率磁性编码器.传感器技术,1996年第5期
4、李怀琼等.一种用软件来实现的莫尔条纹数字化细分技术. 计量技术
5、刘文文.高精度的光栅信号细分算法.应用科学学报,1999年第17卷第1期
 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

传感器是能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置。传感器有许多种,在先进测量技术这门课中提到了许多传感器,在现代工业生产尤其是自动化生产过程中,要用各种传感器来监视和控制生产过程中的各个参数,使设...

关键字: 传感器 信号

高功率脉冲发射机作为一种能够产生高能量、短脉冲信号的设备,在众多领域发挥着关键作用。在雷达系统中,它为目标探测提供强大的发射功率,使得雷达能够在远距离精确识别和跟踪目标;在通信领域,可用于实现高速率、大容量的数据传输;在...

关键字: 高功率 脉冲发射机 信号

在当今数字化、智能化的时代,电子设备无处不在,从智能手机、智能家居到工业控制系统,它们在提升生活品质与生产效率的同时,也面临着高频干扰与兼容性问题的挑战。高频干扰会导致设备信号传输不稳定、数据丢失,甚至系统崩溃;兼容性问...

关键字: 高频干扰 兼容性 信号

在当今电子技术飞速发展的时代,随着电子产品不断向小型化、高性能化迈进,印刷电路板(PCB)的设计变得愈发复杂和精密。过孔,作为 PCB 中连接不同层线路的关键元件,其对信号完整性的影响已成为电路设计中不可忽视的重要因素。...

关键字: 印刷电路板 电路设计 信号

在当今高速发展的电子系统领域,信号完整性已然成为确保系统性能与可靠性的关键要素。从驱动到连接器的信号传输路径宛如一条信息高速公路,而接收端则如同这条公路的终点收费站,其设置的合理性直接关乎信号能否准确无误地抵达目的地。若...

关键字: 信号 连接器 驱动

在电子系统设计与信号传输过程中,工程师们常常会遇到信号波形不理想的情况。其中,信号波形下降沿出现上冲现象是较为常见的问题之一。这种异常不仅会干扰信号的正常传输,影响系统的性能和稳定性,甚至可能导致系统出现误判等严重后果。...

关键字: 信号 干扰 电子系统

在印刷电路板(PCB)设计中,过孔作为连接不同层线路的重要元件,其对信号完整性的影响不容忽视。随着电子技术的飞速发展,电路的工作频率不断提高,信号上升沿时间越来越短,这使得过孔对信号的影响愈发显著。在许多情况下,我们必须...

关键字: 印刷电路板 过孔 信号

在电子电路设计中,24 位 RGB TTL 信号的布线是一个关键环节,其布线质量直接影响到系统的性能和稳定性。特别是在涉及显示设备等对信号完整性要求较高的应用场景中,遵循正确的布线要求至关重要。下面将从多个方面详细阐述...

关键字: 信号 布线 显示设备

在现代高速电子系统中,信号完整性(Signal Integrity, SI)已成为确保系统可靠运行的关键因素。信号完整性是指信号在传输路径上保持其原始特性的能力,当信号从驱动端出发,经过传输线到达连接器,最终被接收端接收...

关键字: 信号 传输路径 质量

在当今电子设备高度集成化与智能化的时代,电磁干扰(EMI)已成为影响设备性能与可靠性的关键因素。随着电子设备数量的激增以及工作频率的不断提升,不同设备间的电磁信号相互干扰问题日益凸显,这不仅可能导致设备功能异常,还可能影...

关键字: 电磁干扰 信号 扩频
关闭