当前位置:首页 > 单片机 > 单片机
[导读]STM32的库函数操作给设计开发人员带来了诸多的便利,开发人员不必十分了解STM32的内部寄存器及硬件机制,只要有C语言基础,即可完成单片机的开发,缩短了开发周期,降低了开发难度,因而备受工程师喜爱。基于库函数的

STM32的库函数操作给设计开发人员带来了诸多的便利,开发人员不必十分了解STM32的内部寄存器及硬件机制,只要有C语言基础,即可完成单片机的开发,缩短了开发周期,降低了开发难度,因而备受工程师喜爱。

基于库函数的开发模式,与基于API(Application Programming Interface)的软件开发有着异曲同工之处,程序员通过调用 API 函数对应用程序进行开发,而又无需访问源码,或理解内部工作机制的细节,可以减轻编程任务。STM32的基于函数库的开发模式也是一样的道理,因此对于有单片机开发经验的工程师来说,学习STM32,很容易就可以上手。

虽然可以不考虑库函数内部的细节,不考虑如何实现硬件寄存器的配置,但是深入了解库函数对于提高编程能力是很有好处的,下面以系统滴答时钟为例,详解其工作流程。

滴答时钟是STM32内部的一个24位定时器,其操作相对简单,配置寄存器较少。大体的工作流程是这样的,定时器首先要有时钟源,时钟源配置好之后,设置定时时间,然后定时器启动,当定时时间到时,置位标志位,重载定时器初值,系统可采用查询标志位和中断两种工作方式做出相应的响应,下面来看看程序如何实现延时功能。

//初始化配置函数

Void Delay_Init()

{

RCC_ClocksTypeDef RCC_ClocksStatus;

RCC_GetClocksFreq(&RCC_ClocksStatus);//获取时钟频率

SysTick_CLKSourceConfig(SysTick_CLKSource_HCLK_Div8);//时钟源配置为系统主时钟频率/8

SysTick_ITConfig(DISABLE);//不使能中断,采用查询方式

delay_fac_us = RCC_ClocksStatus.HCLK_Frequency / 8000000;// 1us的定时初值

}

//实现延时Nus的延时功能

void Delay_us(u32 Nus)

{

SysTick_SetReload(delay_fac_us * Nus);//载入初值

SysTick_CounterCmd(SysTick_Counter_Clear);//计数器清零

SysTick_CounterCmd(SysTick_Counter_Enable);//计数器开始计数

do

{

Status = SysTick_GetFlagStatus(SysTick_FLAG_COUNT);

}while (Status != SET);//不断查询标志位,当载入初值与计数器相等时,标志位置位。

SysTick_CounterCmd(SysTick_Counter_Disable);//关闭计数器

SysTick_CounterCmd(SysTick_Counter_Clear);//清零计数器

}

//实现闪灯

Delay_Init();

While(1)

{

LED1(ON);

Delay_us(500000);//延时500ms

LED1(OFF);

}

下面来看看库函数如何实现相应的寄存器配置。

void SysTick_ITConfig(FunctionalState NewState)

{

/* Check the parameters */

assert_param(IS_FUNCTIONAL_STATE(NewState));

if (NewState != DISABLE)

{

SysTick->CTRL |= CTRL_TICKINT_Set;

}

else

{

SysTick->CTRL &= CTRL_TICKINT_Reset;

}

}

这个函数的作用是配置寄存器开启/关闭中断,FunctionalState是自定义的数据类型,是一个枚举类型,typedef enum {DISABLE = 0, ENABLE = !DISABLE} FunctionalState;

枚举类型是一种基本数据类型而不是构造类型,它用于声明一组命名的常数,将变量的值一一列出来,变量的值只限于列举出来的值的范围内,因此当一个变量有几种可能的取值时,可以将它定义为枚举类型。

assert_param(IS_FUNCTIONAL_STATE(NewState));

这句话的作用是判断参数NewState的值是否正确,如果发现参数出错,它会调用函数assert_failed()向程序员报告错误。

void assert_failed(uint8_t* file, uint32_t line)

{

while (1)

{}

}

SysTick->CTRL |= CTRL_TICKINT_Set;这句话就是用来配置寄存器的语句, SysTick是系统定义的一个结构体如下,SysTick->CTRL即为滴答时钟的控制寄存器。

typedef struct

{

__IO uint32_t CTRL; /*!< Offset: 0x000 (R/W) SysTick Control and Status Register */

__IO uint32_t LOAD; /*!< Offset: 0x004 (R/W) SysTick Reload Value Register */

__IO uint32_t VAL; /*!< Offset: 0x008 (R/W) SysTick Current Value Register */

__I uint32_t CALIB; /*!< Offset: 0x00C (R/ ) SysTick Calibration Register */

} SysTick_Type; //声明一个SysTick_Type型的结构体。

#define SysTick ((SysTick_Type *) SysTick_BASE ) /*!< SysTick configuration struct */

#define SysTick_BASE (SCS_BASE + 0x0010UL) /*!< SysTick Base Address */

#define SCS_BASE (0xE000E000UL) /*!< System Control Space Base Address */

定义一个SysTick_Type类型的结构体实例SysTick,而从根本上来说这是一个地址,就是STM32芯片内部分配给滴答时钟的实际地址0xE000E000UL+0x0010UL。

CTRL_TICKINT_Set是一个宏定义,定义如下

/* CTRL TICKINT Mask */

#define CTRL_TICKINT_Set ((u32)0x00000002)

#define CTRL_TICKINT_Reset ((u32)0xFFFFFFFD)

至此,SysTick->CTRL |= CTRL_TICKINT_Set;这句话的意义已经很清晰了,就是给地址0xE000E000+0x0010 +0x000赋一个0x00000002的值,对应滴答时钟的CTRL寄存器的第2位置1。即为开启中断的意思。

上面讲的是用查询的方式,下面再说下中断触发。只需调用下面这个函数即可完成中断的设置。

SysTick_Config(uint32_t ticks);具体实现如下:

__STATIC_INLINE uint32_t SysTick_Config(uint32_t ticks)

{

if ((ticks - 1) > SysTick_LOAD_RELOAD_Msk) return (1);

SysTick->LOAD = ticks - 1;

NVIC_SetPriority (SysTick_IRQn, (1<<__NVIC_PRIO_BITS) - 1);

SysTick->VAL = 0;

SysTick->CTRL = SysTick_CTRL_CLKSOURCE_Msk |

SysTick_CTRL_TICKINT_Msk |

SysTick_CTRL_ENABLE_Msk;

return (0);

}

函数的参数为ticks,是要装入寄存器SysTick->LOAD的计数值,如果系统时钟为72M,把ticks赋值为SystemFrequency/10000,表示计数到720个时钟周期产生一次中断,而一个时钟周期的时间为(1/72)us,所以720x(1/72)=10us,也就实现了定时10us的功能。

NVIC_SetPriority (SysTick_IRQn, (1<<__NVIC_PRIO_BITS) - 1);为SysTick中断设置优先级。将寄存器SysTick->VAL的值清0。然后使能中断,使能SysTick定时器,时钟源选择为AHB时钟。当定时时间到时,进入中断函数

void SysTick_Handler(void)

{

//具体函数实现由用户编写。

}

通过对这样一个简单定时器的操作,我们可以初步了解到STM32库函数的使用方法,其实开发人员没必要深究库函数内部是如何处理实现的,只需要了解已经封装好的库函数,进行调用即可,因此可以大大降低开发周期,提高开发效率,更多的功能留给读者自行研究开发。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在嵌入式开发中,STM32的时钟系统因其灵活性和复杂性成为开发者关注的焦点。然而,看似简单的时钟配置背后,隐藏着诸多易被忽视的陷阱,轻则导致系统不稳定,重则引发硬件损坏。本文从时钟源选择、PLL配置、总线时钟分配等关键环...

关键字: STM32 时钟系统

在嵌入式系统开发中,STM32系列微控制器的内部温度传感器因其低成本、高集成度特性,广泛应用于设备自检、环境监测等场景。然而,受芯片工艺差异和电源噪声影响,其原始数据存在±1.5℃的固有误差。本文从硬件配置、校准算法、软...

关键字: STM32 温度传感器

在能源效率与智能化需求双重驱动下,AC-DC转换器的数字控制技术正经历从传统模拟方案向全数字架构的深刻变革。基于STM32微控制器的PFM(脉冲频率调制)+PWM(脉冲宽度调制)混合调制策略,结合动态电压调整(Dynam...

关键字: AC-DC STM32

当前智能家居产品需求不断增长 ,在这一背景下 ,对现有浇花装置缺陷进行了改进 ,设计出基于STM32单片机的全 自动家用浇花机器人。该设计主要由机械结构和控制系统构成 ,机械结构通过麦克纳姆轮底盘与喷洒装置的结合实现机器...

关键字: STM32 麦克纳姆轮 安全可靠 通过性强

用c++编程似乎是让你的Arduino项目起步的障碍吗?您想要一种更直观的微控制器编程方式吗?那你需要了解一下Visuino!这个图形化编程平台将复杂电子项目的创建变成了拖动和连接块的简单任务。在本文中,我们将带您完成使...

关键字: Visuino Arduino ESP32 STM32

上海2025年7月21日 /美通社/ -- 本文围绕跨域时间同步技术展开,作为智能汽车 "感知-决策-执行 -交互" 全链路的时间基准,文章介绍了 PTP、gPTP、CAN 等主流同步技术及特点,并以...

关键字: 时钟 时间同步 同步技术 智能汽车

基于STM32与LoRa技术的无线传感网络凭借其低功耗、广覆盖、抗干扰等特性,成为环境监测、工业自动化等场景的核心解决方案。然而,如何在复杂电磁环境中实现高效休眠调度与动态信道优化,成为提升网络能效与可靠性的关键挑战。本...

关键字: STM32 LoRa

在实时控制系统、高速通信协议处理及高精度数据采集等对时间敏感的应用场景中,中断响应延迟的优化直接决定了系统的可靠性与性能上限。STM32系列微控制器凭借其灵活的嵌套向量中断控制器(NVIC)、多通道直接内存访问(DMA)...

关键字: STM32 DMA

数字电源技术向高功率密度、高效率与高动态响应方向加速演进,STM32微控制器凭借其基于DSP库的算法加速能力与对LLC谐振变换器的精准控制架构,成为优化电源动态性能的核心平台。相较于传统模拟控制或通用型数字控制器,STM...

关键字: STM32 数字电源

STM32微控制器凭借其针对电机控制场景的深度优化,成为高精度、高可靠性驱动系统的核心选择。相较于通用型MCU,STM32在电机控制领域的核心优势集中体现在FOC(磁场定向控制)算法的硬件加速引擎与PWM死区时间的动态补...

关键字: STM32 电机控制
关闭