当前位置:首页 > 单片机 > 单片机
[导读]说的直白点就是以下区别,在选择启动文件的时候有选择性区别!startup_stm32f10x_cl.s互联型的STM32F105xx,STM32F107xxstartup_stm32f10x_hd.s 大容量的STM32F101xx,STM32F102xx,STM32F103xxstartup_stm32f10x_hd

说的直白点就是以下区别,在选择启动文件的时候有选择性区别!

startup_stm32f10x_cl.s
互联型的STM32F105xx,STM32F107xx
startup_stm32f10x_hd.s 大容量的STM32F101xx,STM32F102xx,STM32F103xx
startup_stm32f10x_hd_vl.s 大容量的STM32F100xx
startup_stm32f10x_ld.s 小容量的STM32F101xx,STM32F102xx,STM32F103xx
startup_stm32f10x_ld_vl.s 小容量的STM32F100xx
startup_stm32f10x_md.s 中容量的STM32F101xx,STM32F102xx,STM32F103xx
startup_stm32f10x_md_vl.s 中容量的STM32F100xx
startup_stm32f10x_xl.s 超大容量FLASH在512K到1024K字节的STM32F101xx,STM32F102xx,STM32F103xx

疑问一:为什么需要选择启动文件?

1.建立中断服务入口地址,即把中断向量与中断服务函数链接起来。

我们知道在串口NVIC配置中我们只定义了个NVIC_InitStructure.NVIC_IRQChannel = USART2_IRQn;

也就是中断服务向量,再然后我们在stm32f10x_it.c文件的void USART2_IRQHandler(void){} 函数里添加串口的服务程序。

但是mcu怎么知道中断向量USART2_IRQn对应的是USART2_IRQHandler(){}呢,这个就是启动文件所起的作用。

在启动文件.s中 以g_pfnVectors:开头。

2.从systeminit()函数进入到main()函数.

对于stm32我们定义系统时钟的时候直接在system_stm3210x.c文件里修改宏定义即可,而事实上到底是从哪开始执行的呢?

system_stm3210x.c文件里有个SystemInit()函数,就是对时钟的设置。

而这个SystemInit()在哪调用的呢,就是启动文件先调用了,然后才进入到mian()函数。

在启动文件.s中有以下一段话可以解释。



blSystemInit



bl __libc_init_array



bl main

bx lr
3.有些启动文件定义了堆栈大小,可以在这里进行修改。(有些是在.ld进行定义的)

疑问二:这些文件在哪里?

打开官方库文件,可以了解到STM32F10x_StdPeriph_lib/Libraries/CMSIS/CM3/DeviceSupport/ST/STM32F10x/startup

下有4个文件夹armgcc_ride7iarTrueSTUDIO

到底选择哪个文件夹呢?这与编译器有关,不同的编译器调用的指令集是不同的,所以需谨慎选择

arm适用于arm编译器gcc_ride7适用基于GCC_ride7编译器的iar就不用说了都清除TrueSTDIO是ST自己的编译器当然也是基于GCC的用MDK于eclipse可以使用

(在eclipse下用的GCC插件的话,需要把后缀名 .s 改为 .S成大写,不然会编译出错)

疑问三:怎么选择101xx 102xx 103xx是小容量、中容量还是大容量?

查user manual手册,以下为摘录

可以这么认为:flash容量<=32k选择ld

64k<=<=128k选择 md

256<=<=512k选择hd

那怎么区分MCU是多大的flash容量呢?

可以参考下表对于芯片命名说明:Flash memory size

6:32K 8:64K
B:128K C:256K
D:384K E:512KFlash memory size!


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在嵌入式开发中,STM32的时钟系统因其灵活性和复杂性成为开发者关注的焦点。然而,看似简单的时钟配置背后,隐藏着诸多易被忽视的陷阱,轻则导致系统不稳定,重则引发硬件损坏。本文从时钟源选择、PLL配置、总线时钟分配等关键环...

关键字: STM32 时钟系统

在嵌入式系统开发中,STM32系列微控制器的内部温度传感器因其低成本、高集成度特性,广泛应用于设备自检、环境监测等场景。然而,受芯片工艺差异和电源噪声影响,其原始数据存在±1.5℃的固有误差。本文从硬件配置、校准算法、软...

关键字: STM32 温度传感器

在能源效率与智能化需求双重驱动下,AC-DC转换器的数字控制技术正经历从传统模拟方案向全数字架构的深刻变革。基于STM32微控制器的PFM(脉冲频率调制)+PWM(脉冲宽度调制)混合调制策略,结合动态电压调整(Dynam...

关键字: AC-DC STM32

当前智能家居产品需求不断增长 ,在这一背景下 ,对现有浇花装置缺陷进行了改进 ,设计出基于STM32单片机的全 自动家用浇花机器人。该设计主要由机械结构和控制系统构成 ,机械结构通过麦克纳姆轮底盘与喷洒装置的结合实现机器...

关键字: STM32 麦克纳姆轮 安全可靠 通过性强

用c++编程似乎是让你的Arduino项目起步的障碍吗?您想要一种更直观的微控制器编程方式吗?那你需要了解一下Visuino!这个图形化编程平台将复杂电子项目的创建变成了拖动和连接块的简单任务。在本文中,我们将带您完成使...

关键字: Visuino Arduino ESP32 STM32

基于STM32与LoRa技术的无线传感网络凭借其低功耗、广覆盖、抗干扰等特性,成为环境监测、工业自动化等场景的核心解决方案。然而,如何在复杂电磁环境中实现高效休眠调度与动态信道优化,成为提升网络能效与可靠性的关键挑战。本...

关键字: STM32 LoRa

在实时控制系统、高速通信协议处理及高精度数据采集等对时间敏感的应用场景中,中断响应延迟的优化直接决定了系统的可靠性与性能上限。STM32系列微控制器凭借其灵活的嵌套向量中断控制器(NVIC)、多通道直接内存访问(DMA)...

关键字: STM32 DMA

数字电源技术向高功率密度、高效率与高动态响应方向加速演进,STM32微控制器凭借其基于DSP库的算法加速能力与对LLC谐振变换器的精准控制架构,成为优化电源动态性能的核心平台。相较于传统模拟控制或通用型数字控制器,STM...

关键字: STM32 数字电源

STM32微控制器凭借其针对电机控制场景的深度优化,成为高精度、高可靠性驱动系统的核心选择。相较于通用型MCU,STM32在电机控制领域的核心优势集中体现在FOC(磁场定向控制)算法的硬件加速引擎与PWM死区时间的动态补...

关键字: STM32 电机控制

无线充电技术加速渗透消费电子与汽车电子领域,基于Qi协议的无线充电发射端开发成为智能设备能量补给的核心课题。传统模拟控制方案存在响应滞后、参数调整困难等问题,而基于STM32的数字PID控制结合FOD(Foreign O...

关键字: STM32 无线充电
关闭