当前位置:首页 > 单片机 > 单片机
[导读]NVIC:STM32F40xx/STM32F41xx的92个中断里面,包括10个内核中断和82个可屏蔽中断,具有16级可编程的中断优先级,而我们常用的就是这82个可屏蔽中断。那么我们如何管理82个外部中断呢?首先,对STM32中断进行分组,组

NVIC:

STM32F40xx/STM32F41xx的92个中断里面,包括10个内核中断和82个可屏蔽中断,具有16级可编程的中断优先级,而我们常用的就是这82个可屏蔽中断。
那么我们如何管理82个外部中断呢?
首先,对STM32中断进行分组,组0~4。同时,对每个中断设置一个抢占优先级和一个响应优先级值。分组配置在SCB->AIRCR寄存器,如下表:

抢占优先级 & 响应优先级区别1.高优先级的抢占优先级是可以打断正在进行的低抢占优先级中断的。
2.抢占优先级相同的中断,高响应优先级不可以打断低响应优先级的中断。
3.抢占优先级相同的中断,当两个中断同时发生的情况下,哪个响应优先级高,哪个先执行。
4.如果两个中断的抢占优先级和响应优先级都是一样的话,则看哪个中断先发生就先执行;
5.数字越小,优先级越高
注意:一般情况下,系统代码执行过程中,只设置一次中断优先级分组,比如分组2,设置好分组之后一般不会再改变分组。随意改变分组会导致中断管理混乱,程序出现意想不到的执行结果。

相关寄存器配置:
1.中断优先级控制的寄存器组:IP[240] ,高4位用来设置抢占和响应优先级(根据分组)
2.中断使能寄存器组:ISER[8],32位寄存器,每个位控制一个中断的使能。STM32F40x只有82个可屏蔽中断,所以只3.使用了其中的ISER[0]~ISER[2]。
4.中断失能寄存器组:ICER[8],32位寄存器,每个位控制一个中断的失能。STM32F40x只有82个可屏蔽中断,所以只5.使用了其中的ICER[0]和ICER[1]。
6.中断挂起控制寄存器组:ISPR[8],作用:用来挂起中断
7.中断解挂控制寄存器组:ICPR[8],作用:用来解除中断

中断优先级步骤:
1.系统运行后先设置中断优先级分组。
2.针对每个中断,设置对应的抢占优先级和响应优先级
3.如果需要挂起/解挂,查看中断当前激活状态,分别调用相关函数即可。

外部中断

STM32F4的每个IO都可以作为外部中断输入。STM32F4的中断控制器支持22个外部中断/事件请求:
EXTI线0~15:对应外部IO口的输入中断。
EXTI线16:连接到PVD输出。
EXTI线17:连接到RTC闹钟事件。
EXTI线18:连接到USB OTG FS唤醒事件。
EXTI线19:连接到以太网唤醒事件。
EXTI线20:连接到USB OTGHS(在FS中配置)唤醒事件。
EXTI线21:连接到RTC入侵和时间戳事件。
EXTI线22:连接到RTC唤醒事件。
每个外部中断线可以独立的配置触发方式(上升沿,下降沿或者双边沿触发),触发/屏蔽,专用的状态位。

我们重点讲I/O口的外部中断。16个外部中断与I/O口映射方式采用下图方式:

IO口外部中断在中断向量表中只分配了7个中断向量,也就是只能使用7个中断服务函数

从表中可以看出,外部中断线0~4各用一个外部中断,外部中断线5~9分配一个中断向量,共用一个服务函数,外部中断线10~15分配一个中断向量,共用一个中断服务函数。

外部中断相关寄存器

1.SYSCFG外部中断n配置器(总共4个,每个控制4个I/O口):

2.中断屏蔽寄存器:使能中断

3.上升沿/下降沿触发选择寄存器:选择触发方式

4.挂起寄存器:将中断挂起或者取消中断挂起。


外部中断的一般步骤:
使能SYSCFG时钟
初始化IO口为输入
设置IO口与中断线的映射关系。
初始化线上中断,设置触发条件等
配置中断分组(NVIC),并使能中断

编写中断服务函数,清除中断标志位


11.png(93.91 KB, 下载次数: 0)



12.png(81.7 KB, 下载次数: 0)



13.png(76.95 KB, 下载次数: 0)



14.png(63.84 KB, 下载次数: 0)



15.png(86.29 KB, 下载次数: 0)



16.png(79.59 KB, 下载次数: 0)



本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在嵌入式开发中,STM32的时钟系统因其灵活性和复杂性成为开发者关注的焦点。然而,看似简单的时钟配置背后,隐藏着诸多易被忽视的陷阱,轻则导致系统不稳定,重则引发硬件损坏。本文从时钟源选择、PLL配置、总线时钟分配等关键环...

关键字: STM32 时钟系统

在嵌入式系统开发中,STM32系列微控制器的内部温度传感器因其低成本、高集成度特性,广泛应用于设备自检、环境监测等场景。然而,受芯片工艺差异和电源噪声影响,其原始数据存在±1.5℃的固有误差。本文从硬件配置、校准算法、软...

关键字: STM32 温度传感器

在能源效率与智能化需求双重驱动下,AC-DC转换器的数字控制技术正经历从传统模拟方案向全数字架构的深刻变革。基于STM32微控制器的PFM(脉冲频率调制)+PWM(脉冲宽度调制)混合调制策略,结合动态电压调整(Dynam...

关键字: AC-DC STM32

当前智能家居产品需求不断增长 ,在这一背景下 ,对现有浇花装置缺陷进行了改进 ,设计出基于STM32单片机的全 自动家用浇花机器人。该设计主要由机械结构和控制系统构成 ,机械结构通过麦克纳姆轮底盘与喷洒装置的结合实现机器...

关键字: STM32 麦克纳姆轮 安全可靠 通过性强

用c++编程似乎是让你的Arduino项目起步的障碍吗?您想要一种更直观的微控制器编程方式吗?那你需要了解一下Visuino!这个图形化编程平台将复杂电子项目的创建变成了拖动和连接块的简单任务。在本文中,我们将带您完成使...

关键字: Visuino Arduino ESP32 STM32

基于STM32与LoRa技术的无线传感网络凭借其低功耗、广覆盖、抗干扰等特性,成为环境监测、工业自动化等场景的核心解决方案。然而,如何在复杂电磁环境中实现高效休眠调度与动态信道优化,成为提升网络能效与可靠性的关键挑战。本...

关键字: STM32 LoRa

在实时控制系统、高速通信协议处理及高精度数据采集等对时间敏感的应用场景中,中断响应延迟的优化直接决定了系统的可靠性与性能上限。STM32系列微控制器凭借其灵活的嵌套向量中断控制器(NVIC)、多通道直接内存访问(DMA)...

关键字: STM32 DMA

数字电源技术向高功率密度、高效率与高动态响应方向加速演进,STM32微控制器凭借其基于DSP库的算法加速能力与对LLC谐振变换器的精准控制架构,成为优化电源动态性能的核心平台。相较于传统模拟控制或通用型数字控制器,STM...

关键字: STM32 数字电源

STM32微控制器凭借其针对电机控制场景的深度优化,成为高精度、高可靠性驱动系统的核心选择。相较于通用型MCU,STM32在电机控制领域的核心优势集中体现在FOC(磁场定向控制)算法的硬件加速引擎与PWM死区时间的动态补...

关键字: STM32 电机控制

无线充电技术加速渗透消费电子与汽车电子领域,基于Qi协议的无线充电发射端开发成为智能设备能量补给的核心课题。传统模拟控制方案存在响应滞后、参数调整困难等问题,而基于STM32的数字PID控制结合FOD(Foreign O...

关键字: STM32 无线充电
关闭