当前位置:首页 > 单片机 > 单片机
[导读]stm32的flash地址起始于0x08000000,结束地址是0x080000000加上芯片实际的flash大小,不同的芯片flash大小不同。RAM起始地址上0x200000000,结束地址是0x20000000加上芯片的RAM大小。STM32将外设等都映射为地址的形式

stm32的flash地址起始于0x08000000,结束地址是0x080000000加上芯片实际的flash大小,不同的芯片flash大小不同。RAM起始地址上0x200000000,结束地址是0x20000000加上芯片的RAM大小。STM32将外设等都映射为地址的形式,对地址的操作就是多外设的操作。

stm32的外设地址从0x40000000开始,可以看到在库文件中,是通过基于0x40000000地址的偏移量来操作寄存器以及外设的。

一般情况下,程序文件从0x08000000地址写入,这是STM32开始执行的地方,0x08000004是stm32的中断向量表起始地址。

在使用keil编程的过程中,其编程地址的设置一般是这样:


即程序程序的写入地址从0x08000000(数好零的个数)开始的,其大小为0x80000也就是512K的空间,换句话说就是告诉编译器flash的空间是从0x08000000-0x08080000,RAM的地址从0x20000000开始,大小为0x10000也就是64K的RAM。这与STM32的内存地址映射关系是对应的

M3复位后,从0x08000004取出复位中断的地址,并且跳转到复位中断程序,中断执行完之后会跳到我们的main函数,main函数里边一般是一个死循环,进去后就不会再退出,当有中断发生的时候,M3将PC指针强制跳转回中断向量表,然后根据中断源进入对应的中断函数,执行完中断函数之后,再次返回main函数中。大致的流程就是这样。

下面说正题,IAP下载方式:

IAP下载的原理就是在M3中运行有一个程序,这个程序的起始地址是从0x08000000开始的,也就是说M3复位后执行的就是这个程序,称之为bootloader吧,一般这个程序的作用是接收APP程序,就是我们想要下载到M3上的程序,就好比给手机下载新的APP程序一样,下载完成之后就可以跳转APP的地址开始执行新的APP程序。当有APP程序发送到M3上之后,bootloader程序就开始接收并保存在RAM中(其实保存在哪里是由自己决定的,就看你程序怎样设计了),程序下载完成之后,将PC指针指向程序的开始地址就可以执行该程序了,但是还有其他的要设置,那就是中断向量表的偏移量需要根据APP程序的起始地址设置。

例如,在bootloader程序中,程序的起始地址是这样设置的:0x08000000 ,size=0x80000。 RAM从地址:0x2000F800开始,size=0x800。0x20000000-0x2000F800用来作为缓存,接收APP程序,接收完APP程序后将程序复制到flash中,就是最终执行程序的时候,程序要已经写在flash中。

APP程序中,我选择将APP程序烧写在flash中,因为bootloader也会占用flash的空间,APP程序的存储地址从0x08010000开始,size=0x70000,也就说0x08000000-0x08010000这段空间内存放的是bootloader程序。接下来就是中断向量表的设置:因为APP程序的起始地址是0x08010000,所以偏移量为10000,使用语句SCB->VTOR = FLASH_BASE " 0x10000;设置中断向量表的偏移量。

设置好之后,将bootloader程序下载到板子上,复位运行程序,接着下载bin文件程序,要运行bin文件,将PC指针指向BIN文件的开始地址就可以了,也就是指向0x08010000.

APP程序也可以直接运行在RAM中,原理和上边是一样的,就是程序的起始地址不一样了,还有一点就是,既然程序放在了RAM中运行,那么设置RAM要注意地址,一部分是bootloader运行的RAM,一部分是APP程序存放的空间,还有一部分是APP程序运行需要的RAM。

bootloader接收bin文件的时候,我将存放地址定义成USART_RX_BUF[USART_REC_LEN] __attribute__ ((at(0X20001000))),也就是接收到的APP程序开始地址是0x20001000

在RAM运行APP的设置如下:



设置好之后下载bin文件,运行方式和上边是一样的。

本人菜鸟,记录一下,顺便把学到的知识梳理一下,就写了这个,如有错误欢迎大神指出!


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

根据IDC预测,中国在人工智能领域的投资预计到2027年将达到381亿美元,占全球总投资的近9%。作为全球人工智能的重要参与者,中国正加速在汽车、通信、医疗、金融等多个行业应用和发展生成式AI技术,全面迈入“AI 2.0...

关键字: AI 内存 DDR5

在嵌入式开发中,STM32的时钟系统因其灵活性和复杂性成为开发者关注的焦点。然而,看似简单的时钟配置背后,隐藏着诸多易被忽视的陷阱,轻则导致系统不稳定,重则引发硬件损坏。本文从时钟源选择、PLL配置、总线时钟分配等关键环...

关键字: STM32 时钟系统

在嵌入式系统开发中,STM32系列微控制器的内部温度传感器因其低成本、高集成度特性,广泛应用于设备自检、环境监测等场景。然而,受芯片工艺差异和电源噪声影响,其原始数据存在±1.5℃的固有误差。本文从硬件配置、校准算法、软...

关键字: STM32 温度传感器

在能源效率与智能化需求双重驱动下,AC-DC转换器的数字控制技术正经历从传统模拟方案向全数字架构的深刻变革。基于STM32微控制器的PFM(脉冲频率调制)+PWM(脉冲宽度调制)混合调制策略,结合动态电压调整(Dynam...

关键字: AC-DC STM32

8月17日消息,近日,超频爱好者“saltycroissant”成功将海盗船(CORSAIR)DDR5内存超频至12886MT/s,创造了新的世界纪录。

关键字: 内存 DDR5

在高性能服务架构设计中,缓存是不可或缺的环节。在实际项目中,我们通常会将一些热点数据存储在Redis或Memcached等缓存中间件中,只有在缓存访问未命中时才查询数据库。

关键字: 缓存 内存

7月25日消息,由于供应短缺,最近一段时间DDR4内存频繁出现涨价、缺货等现象。

关键字: DDR4 内存

当前智能家居产品需求不断增长 ,在这一背景下 ,对现有浇花装置缺陷进行了改进 ,设计出基于STM32单片机的全 自动家用浇花机器人。该设计主要由机械结构和控制系统构成 ,机械结构通过麦克纳姆轮底盘与喷洒装置的结合实现机器...

关键字: STM32 麦克纳姆轮 安全可靠 通过性强

用c++编程似乎是让你的Arduino项目起步的障碍吗?您想要一种更直观的微控制器编程方式吗?那你需要了解一下Visuino!这个图形化编程平台将复杂电子项目的创建变成了拖动和连接块的简单任务。在本文中,我们将带您完成使...

关键字: Visuino Arduino ESP32 STM32

基于STM32与LoRa技术的无线传感网络凭借其低功耗、广覆盖、抗干扰等特性,成为环境监测、工业自动化等场景的核心解决方案。然而,如何在复杂电磁环境中实现高效休眠调度与动态信道优化,成为提升网络能效与可靠性的关键挑战。本...

关键字: STM32 LoRa
关闭