当前位置:首页 > 单片机 > 单片机
[导读]STM32产生PWM是非常的方便的,要需要简单的设置定时器,即刻产生!当然,简单的设置对于新手来讲,也是麻烦的,主要包括:(1)使能定时器时钟:RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);(2)定义相应

STM32产生PWM是非常的方便的,要需要简单的设置定时器,即刻产生!当然,简单的设置对于新手来讲,也是麻烦的,主要包括:

(1)使能定时器时钟:


RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);



(2)定义相应的GPIO:

/* PA2,3,4,5,6输出->Key_Up,Key_Down,Key_Left,Key_Right,Key_Ctrl */

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2|GPIO_Pin_3|GPIO_Pin_4|GPIO_Pin_5|GPIO_Pin_6;

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU; //下拉接地,检测输入的高电平

GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; //50M时钟速度

GPIO_Init(GPIOA, &GPIO_InitStructure);

/* PA7用于发出PWM波,即无线数据传送 */

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7;

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;

GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; //50M时钟速度

GPIO_Init(GPIOA, &GPIO_InitStructure);



(3)如果是产生PWM(频率不变,占空比可变),记得打开PWM控制,在TIM_Configuration()中。


TIM_Cmd(TIM3,ENABLE);


/* TIM1 Main Output Enable */

TIM_CtrlPWMOutputs(TIM1,ENABLE);



利用定时器产生不同频率的PWM

有时候,需要产生不同频率的PWM,这个时候,设置与产生相同PWM的程序,有关键的不一样。

(一) 设置的原理

利用改变定时器输出比较通道的捕获值,当输出通道捕获值产生中断时,在中断中将捕获值改变,这时, 输出的I/O会产生一个电平翻转,利用这种办法,实现不同频率的PWM输出。

(二)关键设置

在定时器设置中:


TIM_OC2PreloadConfig(TIM3, TIM_OCPreload_Disable);


在中断函数中:

if (TIM_GetITStatus(TIM3, TIM_IT_CC2) != RESET)

{

TIM_ClearITPendingBit(TIM3, TIM_IT_CC2);

capture = TIM_GetCapture2(TIM3);

TIM_SetCompare2(TIM3, capture + Key_Value);

}



一个定时器四个通道,分别产生不同频率(这个例子网上也有)



vu16 CCR1_Val = 32768;

vu16 CCR2_Val = 16384;

vu16 CCR3_Val = 8192;

vu16 CCR4_Val = 4096;

void TIM_Configuration(void)

{

TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;

TIM_OCInitTypeDef TIM_OCInitStructure;

/* TIM2 clock enable */

RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);

/* ---------------------------------------------------------------

TIM2 Configuration: Output Compare Toggle Mode:

TIM2CLK = 36 MHz, Prescaler = 0x2, TIM2 counter clock = 12 MHz

CC1 update rate = TIM2 counter clock / CCR1_Val = 366.2 Hz

CC2 update rate = TIM2 counter clock / CCR2_Val = 732.4 Hz

CC3 update rate = TIM2 counter clock / CCR3_Val = 1464.8 Hz

CC4 update rate = TIM2 counter clock / CCR4_Val = 2929.6 Hz

--------------------------------------------------------------- *//* Time base configuration */

TIM_TimeBaseStructure.TIM_Period = 65535;

TIM_TimeBaseStructure.TIM_Prescaler = 2;

TIM_TimeBaseStructure.TIM_ClockDivision = 0;

TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;


TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);/* Channel 1 Configuration in PWM mode */

TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_Toggle; //PWM模式2

TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; //正向通道有效

TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Disable;//反向通道无效

TIM_OCInitStructure.TIM_Pulse = CCR1_Val; //占空时间

TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_Low; //输出极性

TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCNPolarity_High; //互补端的极性

TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Set;

TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCIdleState_Reset;TIM_OC1Init(TIM2,&TIM_OCInitStructure); //通道1

TIM_OC1PreloadConfig(TIM2, TIM_OCPreload_Disable);TIM_OCInitStructure.TIM_Pulse = CCR2_Val; //占空时间

TIM_OC2Init(TIM2,&TIM_OCInitStructure); //通道2

TIM_OC2PreloadConfig(TIM2, TIM_OCPreload_Disable);TIM_OCInitStructure.TIM_Pulse = CCR3_Val; //占空时间

TIM_OC3Init(TIM2,&TIM_OCInitStructure); //通道3

TIM_OC3PreloadConfig(TIM2, TIM_OCPreload_Disable);TIM_OCInitStructure.TIM_Pulse = CCR4_Val; //占空时间

TIM_OC4Init(TIM2,&TIM_OCInitStructure); //通道4

TIM_OC4PreloadConfig(TIM2, TIM_OCPreload_Disable);

/* TIM2 counter enable */

TIM_Cmd(TIM2,ENABLE);


/* TIM2 Main Output Enable */

//TIM_CtrlPWMOutputs(TIM2,ENABLE);/* TIM IT enable */

TIM_ITConfig(TIM2, TIM_IT_CC1 | TIM_IT_CC2 | TIM_IT_CC3 | TIM_IT_CC4, ENABLE);

}

void GPIO_Configuration(void)

{

GPIO_InitTypeDef GPIO_InitStructure;/*允许总线CLOCK,在使用GPIO之前必须允许相应端的时钟.从STM32的设计角度上说,没被允许的端将不接入时钟,也就不会耗能,这是STM32节能的一种技巧,*/


RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);

RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);

RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOC, ENABLE);

RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOD, ENABLE);


/* PA2,3,4,5,6,7输出->LED1,LED2,LED3,LED4,LED5,LED6 */

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2|GPIO_Pin_3|GPIO_Pin_4|GPIO_Pin_5|GPIO_Pin_6|GPIO_Pin_7;

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_OD; //开漏输出

GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; //50M时钟速度

GPIO_Init(GPIOA, &GPIO_InitStructure);


/* PB0,1输出->LED7,LED8*/

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0|GPIO_Pin_1;

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_OD; //开漏输出

GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; //50M时钟速度

GPIO_Init(GPIOB, &GPIO_InitStructure);


/* PA0,1->KEY_LEFT,KEY_RIGHT*/

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0|GPIO_Pin_1;

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU; //上拉输入

GPIO_Init(GPIOA, &GPIO_InitStructure);/* PC13->KEY_UP*/

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13;

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU; //上拉输入

GPIO_Init(GPIOC, &GPIO_InitStructure);/* PB5->KEY_DOWN*/

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5;

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU; //上拉输入

GPIO_Init(GPIOB, &GPIO_InitStructure);

/* GPIOA Configuration:TIM2 Channel1, 2, 3 and 4 in Output */

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3;

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;

GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;

GPIO_Init(GPIOA, &GPIO_InitStructure);

}

void NVIC_Configuration(void)

{

NVIC_InitTypeDef NVIC_InitStructure;/* Configure one bit for preemption priority */

NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1);NVIC_InitStructure.NVIC_IRQChannel=TIM2_IRQn;

NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=0;

NVIC_InitStructure.NVIC_IRQChannelSubPriority=1;

NVIC_InitStructure.NVIC_IRQChannelCmd=ENABLE;

NVIC_Init(&NVIC_InitStructure);

}


u16 capture = 0;

extern vu16 CCR1_Val;

extern vu16 CCR2_Val;

extern vu16 CCR3_Val;

extern vu16 CCR4_Val;


void TIM2_IRQHandler(void)

{

/* TIM2_CH1 toggling with frequency = 183.1 Hz */

if (TIM_GetITStatus(TIM2, TIM_IT_CC1) != RESET)

{

TIM_ClearITPendingBit(TIM2, TIM_IT_CC1 );

capture = TIM_GetCapture1(TIM2);

TIM_SetCompare1(TIM2, capture + CCR1_Val );

}


/* TIM2_CH2 toggling with frequency = 366.2 Hz */

if (TIM_GetITStatus(TIM2, TIM_IT_CC2) != RESET)

{

TIM_ClearITPendingBit(TIM2, TIM_IT_CC2);

capture = TIM_GetCapture2(TIM2);

TIM_SetCompare2(TIM2, capture + CCR2_Val);

}/* TIM2_CH3 toggling with frequency = 732.4 Hz */

if (TIM_GetITStatus(TIM2, TIM_IT_CC3) != RESET)

{

TIM_ClearITPendingBit(TIM2, TIM_IT_CC3);

capture = TIM_GetCapture3(TIM2);

TIM_SetCompare3(TIM2, capture + CCR3_Val);

}/* TIM2_CH4 toggling with frequency = 1464.8 Hz */

if (TIM_GetITStatus(TIM2, TIM_IT_CC4) != RESET)

{

TIM_ClearITPendingBit(TIM2, TIM_IT_CC4);

capture = TIM_GetCapture4(TIM2);

TIM_SetCompare4(TIM2, capture + CCR4_Val);

}}



一个定时器一个通道,产生不同频率

其它的设置都一样,就是在主函数中修改一个参数,然后在定时器中断中,根据这个参数,改变频率。


#include "stm32lib\stm32f10x.h"

#include "hal.h"volatile u16 Key_Value=1000; //用于保存按键相应的PWM波占空比值

int main(void)

{

ChipHalInit();

ChipOutHalInit();while(1)

{

if( (!Get_Key_Up)&(!Get_Key_Down)&(!Get_Key_Left)&(!Get_Key_Right)&(!Get_Key_Ctrl) )

{

Key_Value=12000;

}

else

{

if(Get_Key_Up) //按键前进按下 ,对应1kHz

{

Key_Value=6000;

}

else if(Get_Key_Down) //按键后退按下 ,对应2kHz

{

Key_Value=3000;

}

Delay_Ms(20); //10ms延时if(Get_Key_Left) //按键左转按下,对应3kHz

{

Key_Value=2000;

}

else if(Get_Key_Right) //按键右转按下,对应4kHz

{

Key_Value=1500;

}

Delay_Ms(20); //10ms延时if(Get_Key_Ctrl) //按键控制按下,对应5kHz

{

Key_Value=1200;

}

Delay_Ms(20); //10ms延时

}

}

}extern volatile u16 Key_Value;

u16 capture=0;

void TIM3_IRQHandler(void)

{

/* TIM2_CH2 toggling with frequency = 366.2 Hz */

if (TIM_GetITStatus(TIM3, TIM_IT_CC2) != RESET)

{

TIM_ClearITPendingBit(TIM3, TIM_IT_CC2);

capture = TIM_GetCapture2(TIM3);

TIM_SetCompare2(TIM3, capture + Key_Value);

}

}void TIM3_Configuration(void)

{

TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;

TIM_OCInitTypeDef TIM_OCInitStructure;/* TIM2 clock enable */

RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);/*TIM1时钟配置*/

TIM_TimeBaseStructure.TIM_Prescaler = 5; //预分频(时钟分频)72M/6=12M

TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; //向上计数

TIM_TimeBaseStructure.TIM_Period = 65535; //装载值选择最大

TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1;

TIM_TimeBaseStructure.TIM_RepetitionCounter = 0x0;

TIM_TimeBaseInit(TIM3,&TIM_TimeBaseStructure);/* Channel 1 Configuration in PWM mode */

TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_Toggle; //PWM模式2

TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; //正向通道有效

TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Disable;//反向通道无效

TIM_OCInitStructure.TIM_Pulse = Key_Value; //占空时间

TIM_OCInitStructure.TIM_OCPolarity =

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

智能合灯控制系统由环境光照检测、人体接近检测、语音识别、按键控制、合灯控制、数据显示、蓝牙通信、报警提示功能模块组成。

关键字: STM32 智能台灯

捡球机的移动装置以直流电机驱动,寻球装置以摄像头图像传感器模块构成,并搭配以图像检测算法。避障装置以红外检测和报警模块为主,以防在行动过程中触碰障碍物。

关键字: STM32 捡球机

ST于近期发布了“STM32WBA”无线MCU、“STM32U0”超低功耗入门级MCU、“STM32H7R/S”高性能MCU和“STM32MP2”四大重磅新品,还透露将会在今年推出18nm的STM32新品。

关键字: STM32 MCU NPU AI 超低功耗

在微控制器领域,MSP430与STM32无疑是两颗璀璨的明星。它们各自凭借其独特的技术特点和广泛的应用领域,在市场上占据了重要的位置。本文将深入解析MSP430与STM32之间的区别,探讨它们在不同应用场景下的优势和局限...

关键字: MSP430 STM32 单片机

STM32是由意法半导体公司(STMicroelectronics)推出的基于ARM Cortex-M内核的32位微控制器系列,以其高性能、低功耗、丰富的外设接口和强大的生态系统深受广大嵌入式开发者喜爱。本文将详细介绍S...

关键字: STM32 单片机

STM32与51单片机之间有什么差异呢?两者可以说是一场科技与性能的较量了。在科技飞速发展的今天,微控制器(MCU)已广泛应用于各类电子设备和系统中,发挥着举足轻重的作用。其中,STM32和51单片机作为两种常见的微控制...

关键字: STM32 51单片机 MCU

电磁铁是一种利用电流产生磁场的装置,具有快速响应、易于控制等特点,在工业自动化、电子设备、科学实验等领域有着广泛的应用。STM32是一款功能强大的微控制器,具有高性能、低功耗、易于编程等优点,是控制电磁铁的理想选择。本文...

关键字: 电磁铁 微控制器 STM32

边缘人工智能的实现涉及到三个基本 要素:安全性,连接性、自主性,而其中自主性是AI能力的体现,也是边缘AI有别于其他传统的物联网的关键。而通过ST Edge AI套件,就可以帮助各种不同类型的开发者实现覆盖全硬件平台的全...

关键字: 边缘人工智能 AI STM32

今天,小编将在这篇文章中为大家带来STM32单片机最小系统的有关报道,通过阅读这篇文章,大家可以对它具备清晰的认识,主要内容如下。

关键字: 单片机 单片机最小系统 STM32

STM32是一款由STMicroelectronics生产的微控制器系列,具有高性能、低功耗和丰富的外设资源。其中,串口通信是一种常用的通信方式,可以实现与其他设备之间的数据传输。

关键字: STM32 串口通信 微控制器
关闭
关闭