当前位置:首页 > 单片机 > 单片机
[导读] cortex-m3支持256个中端,其中包含了16个内核中断,240个外部中断。stm32只有84个中断,包括16个内核中断和68个可屏蔽中断。stm32f103上只有60个中断,f107上才有68个中断。中断是stm32很基础的一个功能,学会使用

cortex-m3支持256个中端,其中包含了16个内核中断,240个外部中断。stm32只有84个中断,包括16个内核中断和68个可屏蔽中断。stm32f103上只有60个中断,f107上才有68个中断。

中断是stm32很基础的一个功能,学会使用中断,才可以更好的使用其他的外设。理解stm32的中断,必须要先从stm32的中断优先级分组是怎么回事。要理解优先级分组,就要先理解什么是先占优先级,和次占优先级。

先占优先级的概念等同于51单片机中的中断。假设有两中断先后触发,已经在执行的中断先占优先级如果没有后触发的中断 先占优先级更高,就会先处理先占优先级高的中断。也就是说又有较高的先占优先级的中断可以打断先占优先级较低的中断。这是实现中断嵌套的基础。

次占优先级只在同一先占优先级的中断同时触发时起作用,先占优先级相同,则优先执行次占优先级较高的中断。次占优先级不会造成中断嵌套。 如果中断的两个优先级都一致,则优先执行位于中断向量表中位置较高的中断。

还需要注意的一点是 这里的中断优先级 高是指 是指是否更接近0级,0级优先级是最高的。

那么最低的优先级可以是多少?这就涉及了优先级分组的概念。 stm32 通过一个中断向量控制器(NVIC),来分配先占优先级和次占优先级的数量。

arm cortex-m3 内核中拥有一个3位宽度的的PRIGROUP数据区,用来指示一个8位数据序列中的小数点的位置从而表示中断优先级的分组。

举个例子可以更好的理解:如果PRIGROUP 数据位000 即为0 说明8位数据序列中小数位置在第1位的左边 为xxxxxxx.y 用于表示中断优先级的分组的含义就是 用7位的数据宽度来表示 先占优先级的数量 即为128 用1位的数据宽度来表示 次占优先级数量 即为 2


所以arm cortex-m3中有2的三次方 即为8个优先级分组 。

但是stm32中只有5个优先级分组,表示方法略有不同,参照下表:

MDK中定义的中断相关的寄存器结构体为:


typedef struct

{

vu32 ISER[2];

u32 RESERVED0[30];

vu32 ICER[2];

u32 RSERVED1[30];

vu32 ISPR[2];

u32 RESERVED2[30];

vu32 ICPR[2];

u32 RESERVED3[30];

vu32 IABR[2];

u32 RESERVED4[62];

vu32 IPR[15];

} NVIC_TypeDef;

ISER[2]:中断使能寄存器组

stm32可屏蔽中断共有60个,这里用了两个32位的寄存器,可以表示64个中断。stm32只用了前60位。 若要使能某个中断,则必须设置相应的ISER位为1。

具体每一位对应的中断关系如下:(参见 MDK下的stm32f10x_nvic.h)

#defineWWDG_IRQChannel((u8)0x00)/*WindowWatchDogInterrupt*/#definePVD_IRQChannel((u8)0x01)/*PVDthroughEXTILinedetectionInterrupt*/#defineTAMPER_IRQChannel((u8)0x02)/*TamperInterrupt*/#defineRTC_IRQChannel((u8)0x03)/*RTCglobalInterrupt*/#defineFLASH_IRQChannel((u8)0x04)/*FLASHglobalInterrupt*/#defineRCC_IRQChannel((u8)0x05)/*RCCglobalInterrupt*/#defineEXTI0_IRQChannel((u8)0x06)/*EXTILine0Interrupt*/#defineEXTI1_IRQChannel((u8)0x07)/*EXTILine1Interrupt*/#defineEXTI2_IRQChannel((u8)0x08)/*EXTILine2Interrupt*/#defineEXTI3_IRQChannel((u8)0x09)/*EXTILine3Interrupt*/#defineEXTI4_IRQChannel((u8)0x0A)/*EXTILine4Interrupt*/#defineDMA1_Channel1_IRQChannel((u8)0x0B)/*DMA1Channel1globalInterrupt*/#defineDMA1_Channel2_IRQChannel((u8)0x0C)/*DMA1Channel2globalInterrupt*/#defineDMA1_Channel3_IRQChannel((u8)0x0D)/*DMA1Channel3globalInterrupt*/#defineDMA1_Channel4_IRQChannel((u8)0x0E)/*DMA1Channel4globalInterrupt*/#defineDMA1_Channel5_IRQChannel((u8)0x0F)/*DMA1Channel5globalInterrupt*/#defineDMA1_Channel6_IRQChannel((u8)0x10)/*DMA1Channel6globalInterrupt*/#defineDMA1_Channel7_IRQChannel((u8)0x11)/*DMA1Channel7globalInterrupt*/#defineADC1_2_IRQChannel((u8)0x12)/*ADC1etADC2globalInterrupt*/#defineUSB_HP_CAN_TX_IRQChannel((u8)0x13)/*USBHighPriorityorCANTXInterrupts*/#defineUSB_LP_CAN_RX0_IRQChannel((u8)0x14)/*USBLowPriorityorCANRX0Interrupts*/#defineCAN_RX1_IRQChannel((u8)0x15)/*CANRX1Interrupt*/#defineCAN_SCE_IRQChannel((u8)0x16)/*CANSCEInterrupt*/#defineEXTI9_5_IRQChannel((u8)0x17)/*ExternalLine[9:5]Interrupts*/#defineTIM1_BRK_IRQChannel((u8)0x18)/*TIM1BreakInterrupt*/#defineTIM1_UP_IRQChannel((u8)0x19)/*TIM1UpdateInterrupt*/#defineTIM1_TRG_COM_IRQChannel((u8)0x1A)/*TIM1TriggerandCommutationInterrupt*/#defineTIM1_CC_IRQChannel((u8)0x1B)/*TIM1CaptureCompareInterrupt*/#defineTIM2_IRQChannel((u8)0x1C)/*TIM2globalInterrupt*/#defineTIM3_IRQChannel((u8)0x1D)/*TIM3globalInterrupt*/#defineTIM4_IRQChannel((u8)0x1E)/*TIM4globalInterrupt*/#defineI2C1_EV_IRQChannel((u8)0x1F)/*I2C1EventInterrupt*/#defineI2C1_ER_IRQChannel((u8)0x20)/*I2C1ErrorInterrupt*/#defineI2C2_EV_IRQChannel((u8)0x21)/*I2C2EventInterrupt*/#defineI2C2_ER_IRQChannel((u8)0x22)/*I2C2ErrorInterrupt*/#defineSPI1_IRQChannel((u8)0x23)/*SPI1globalInterrupt*/#defineSPI2_IRQChannel((u8)0x24)/*SPI2globalInterrupt*/#defineUSART1_IRQChannel((u8)0x25)/*USART1globalInterrupt*/#defineUSART2_IRQChannel((u8)0x26)/*USART2globalInterrupt*/#defineUSART3_IRQChannel((u8)0x27)/*USART3globalInterrupt*/#defineEXTI15_10_IRQChannel((u8)0x28)/*ExternalLine[15:10]Interrupts*/#defineRTCAlarm_IRQChannel((u8)0x29)/*RTCAlarmthroughEXTILineInterrupt*/#defineUSBWakeUp_IRQChannel((u8)0x2A)/*USBWakeUpfromsuspendthroughEXTILineInterrupt*/#defineTIM8_BRK_IRQChannel((u8)0x2B)/*TIM8BreakInterrupt*/#defineTIM8_UP_IRQChannel((u8)0x2C)/*TIM8UpdateInterrupt*/#defineTIM8_TRG_COM_IRQChannel((u8)0x2D)/*TIM8TriggerandCommutationInterrupt*/#defineTIM8_CC_IRQChannel((u8)0x2E)/*TIM8CaptureCompareInterrupt*/#defineADC3_IRQChannel((u8)0x2F)/*ADC3globalInterrupt*/#defineFSMC_IRQChannel((u8)0x30)/*FSMCglobalInterrupt*/#defineSDIO_IRQChannel((u8)0x31)/*SDIOglobalInterrupt*/#defineTIM5_IRQChannel((u8)0x32)/*TIM5globalInterrupt*/#defineSPI3_IRQChannel((u8)0x33)/*SPI3globalInterrupt*/#defineUART4_IRQChannel((u8)0x34)/*UART4globalInterrupt*/#defineUART5_IRQChannel((u8)0x35)/*UART5globalInterrupt*/#defineTIM6_IRQChannel((u8)0x36)/*TIM6globalInterrupt*/#defineTIM7_IRQChannel((u8)0x37)/*TIM7globalInterrupt*/#defineDMA2_Channel1_IRQChannel((u8)0x38)/*DMA2Channel1globalInterrupt*/#defineDMA2_Channel2_IRQChannel((u8)0x39)/*DMA2Channel2globalInterrupt*/#defineDMA2_Channel3_IRQChannel((u8)0x3A)/*DMA2Channel3globalInterrupt*/#defineDMA2_Channel4_5_IRQChannel((u8)0x3B)/*DMA2Channel4andDMA2Channel5globalInterrupt*/

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在微控制器领域,MSP430与STM32无疑是两颗璀璨的明星。它们各自凭借其独特的技术特点和广泛的应用领域,在市场上占据了重要的位置。本文将深入解析MSP430与STM32之间的区别,探讨它们在不同应用场景下的优势和局限...

关键字: MSP430 STM32 单片机

STM32是由意法半导体公司(STMicroelectronics)推出的基于ARM Cortex-M内核的32位微控制器系列,以其高性能、低功耗、丰富的外设接口和强大的生态系统深受广大嵌入式开发者喜爱。本文将详细介绍S...

关键字: STM32 单片机

STM32与51单片机之间有什么差异呢?两者可以说是一场科技与性能的较量了。在科技飞速发展的今天,微控制器(MCU)已广泛应用于各类电子设备和系统中,发挥着举足轻重的作用。其中,STM32和51单片机作为两种常见的微控制...

关键字: STM32 51单片机 MCU

电磁铁是一种利用电流产生磁场的装置,具有快速响应、易于控制等特点,在工业自动化、电子设备、科学实验等领域有着广泛的应用。STM32是一款功能强大的微控制器,具有高性能、低功耗、易于编程等优点,是控制电磁铁的理想选择。本文...

关键字: 电磁铁 微控制器 STM32

边缘人工智能的实现涉及到三个基本 要素:安全性,连接性、自主性,而其中自主性是AI能力的体现,也是边缘AI有别于其他传统的物联网的关键。而通过ST Edge AI套件,就可以帮助各种不同类型的开发者实现覆盖全硬件平台的全...

关键字: 边缘人工智能 AI STM32

今天,小编将在这篇文章中为大家带来STM32单片机最小系统的有关报道,通过阅读这篇文章,大家可以对它具备清晰的认识,主要内容如下。

关键字: 单片机 单片机最小系统 STM32

STM32是一款由STMicroelectronics生产的微控制器系列,具有高性能、低功耗和丰富的外设资源。其中,串口通信是一种常用的通信方式,可以实现与其他设备之间的数据传输。

关键字: STM32 串口通信 微控制器

STM32是一种广泛使用的微控制器,具有丰富的通信接口。其中,串口通信是STM32与其他设备或系统进行数据交换的重要方式之一。本文将详细介绍STM32串口通信的原理、应用及常见故障。

关键字: STM32 串口通信

由于目前缺乏相应的监测技术,地下电缆线路出现异常运行状态无法被及时发现,久而久之易演变成大故障,最终只能通过更换地下电缆进行修复,耗费大量的人力、物力。鉴于此,开发了一种基于STM32的地下电缆异常状态检测系统,利用热传...

关键字: STM32 地下电缆

交通灯控制器是用于控制交通信号灯运行的设备,它可以根据交通流量、行人需求以及其他因素,动态地调整信号灯的变化时间和绿灯时长,以保证交通的流畅和安全。

关键字: 交通信号灯 STM32
关闭
关闭