当前位置:首页 > 单片机 > 单片机
[导读]以STM32 ADC的常规通道为例(注入通道类似):如图,STM32 ADC的常规通道可以由以上6个信号触发任何一个,我们以使用TIM2_CH2触发ADC1,独立模式,每次仅测一条通道,则ADC的配置如下:(以下代码使用STM32固件库V3.

 

以STM32 ADC的常规通道为例(注入通道类似):

如图,STM32 ADC的常规通道可以由以上6个信号触发任何一个,我们以使用TIM2_CH2触发ADC1,独立模式,每次仅测一条通道,则ADC的配置如下:(以下代码使用STM32固件库V3.5)

void ADC_Configuration(void)

{

ADC_InitTypeDef ADC_InitStructure;

ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;

ADC_InitStructure.ADC_ScanConvMode = DISABLE; //关闭通道扫描模式

ADC_InitStructure.ADC_ContinuousConvMode = DISABLE;

//注意不要使用持续转换模式,否则只要触发一次,

//后续的转换就会永不停歇(除非CONT清0),这样第一次以后的ADC,就不是由TIM2_CC2来触发了

ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T2_CC2;//配置TIM2_CC2为触发源

ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;

ADC_InitStructure.ADC_NbrOfChannel = 1;

ADC_Init(ADC1, &ADC_InitStructure);

RCC_ADCCLKConfig(RCC_PCLK2_Div6);//配置时钟(12MHz),在RCC里面还应配置APB2=AHB时钟72MHz,

ADC_RegularChannelConfig(ADC1, ADC_Channel_8, 1, ADC_SampleTime_1Cycles5);

ADC_Cmd(ADC1,ENABLE);

ADC_ResetCalibration(ADC1);

while(ADC_GetResetCalibrationStatus(ADC1));

ADC_StartCalibration(ADC1); //Start Calibration register

while(ADC_GetCalibrationStatus(ADC1));//waiting for finishing the calibration

ADC_ExternalTrigConvCmd(ADC1, ENABLE);

//设置外部触发模式使能(这个“外部“其实仅仅是相对于ADC模块的外部,实际上还是在STM32内部)

}

这里再注意一点上面左图最顶上的那句话:当外部触发信号被选为ADC规则或注入转换时,只有它的上升沿可以启动转换。这跟下面的定时器2的正确配置关系很大。

 

void TIM2_Configuration(void)

{

TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;

TIM_OCInitTypeDef TIM_OCInitStructure;

TIM_TimeBaseStructure.TIM_Period = 10000; //设置100ms一次TIM2比较的周期

TIM_TimeBaseStructure.TIM_Prescaler = 719;//系统主频72M,这里分频720,相当于100K的定时器2时钟

TIM_TimeBaseStructure.TIM_ClockDivision = 0x0;

TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;

TIM_TimeBaseInit(TIM2, & TIM_TimeBaseStructure);

TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;//下面详细说明

TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;//TIM_OutputState_Disable;

TIM_OCInitStructure.TIM_Pulse = 5000;

TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_Low;//如果是PWM1要为Low,PWM2则为High

TIM_OC2Init(TIM2, & TIM_OCInitStructure);

TIM_Cmd(TIM2, ENABLE);

TIM_InternalClockConfig(TIM2);

TIM_OC2PreloadConfig(TIM2, TIM_OCPreload_Enable);

TIM_UpdateDisableConfig(TIM2, DISABLE);

}

上图中红蓝两个框的中间部分,顶上是TIM2的自动重装寄存器和计数器寄存器,下面4个Capture/compare x register是TIM2_CCRx寄存器。

 

要使用TIM2的CC2来触发ADC,看懂这个图是关键。

首先要明确,这个图的红框部分和蓝框部分,是不会同时工作的,红框是配置为输入捕捉模式才能生效,蓝框是配置为输出比较模式才能生效,通过配置TIM2_CCMR1_CC2S来控制TIM2_CC2究竟是处于哪种模式(CC2S=0为比较输出,>0为输入捕捉),请注意:这里蓝框的其中一个输出是TIMx_CH2,而TIM2_CH2又是ADC规则通道的触发源,也就是说如果要触发ADC,则需要每次比较匹配时,在TIM2_CH2上产生一次上升沿。

 

那么我们首先需要操作蓝框内的最左边部分也就是OC2REF,要使比较匹配时发生一次上升沿,(以定时器向上计数为例)就需要在TIM2_CNT时,通道2为低电平,TIM2_CNT>=TIM2_CCR2时,通道2为高电平。

从参考手册定时器一章4.7节的CCMR1寄存器中的0C2M[2:0]的介绍可以看出来,只有在PWM模式才能满足上面所说的条件,任何单纯的冻结、配置OC2REF为高或者为低、强制OC2REF为高或者为低,都无法满足要求,不少同学就是死在这个上面,以为是配置TIMING模式,实际上这样根本无法改变OC2REF的电平,就无从触发ADC了。

CCMR1_CCxS(x为1、2、3、4,决定是哪个通道)是选择为捕捉输入还是比较输出,这里我们需要配置为输出。

以上两段配置程序,可以以100ms的周期驱动AD转换一次,不再需要使用TIM和ADC中断资源。

 

总结:想要使用STM32的定时器触发ADC,必须将定时器配置为比较输出PWM模式,并且一定要注意TIMx_CHx输出上升沿才出发,若是在比较匹配的瞬时产生的不是上升沿而是下降沿,那么就不一定是在比较匹配的瞬间触发ADC了,特别是在类似于电机控制的应用中要注意这一点。

 

 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在嵌入式开发中,STM32的时钟系统因其灵活性和复杂性成为开发者关注的焦点。然而,看似简单的时钟配置背后,隐藏着诸多易被忽视的陷阱,轻则导致系统不稳定,重则引发硬件损坏。本文从时钟源选择、PLL配置、总线时钟分配等关键环...

关键字: STM32 时钟系统

在嵌入式系统开发中,STM32系列微控制器的内部温度传感器因其低成本、高集成度特性,广泛应用于设备自检、环境监测等场景。然而,受芯片工艺差异和电源噪声影响,其原始数据存在±1.5℃的固有误差。本文从硬件配置、校准算法、软...

关键字: STM32 温度传感器

在能源效率与智能化需求双重驱动下,AC-DC转换器的数字控制技术正经历从传统模拟方案向全数字架构的深刻变革。基于STM32微控制器的PFM(脉冲频率调制)+PWM(脉冲宽度调制)混合调制策略,结合动态电压调整(Dynam...

关键字: AC-DC STM32

当前智能家居产品需求不断增长 ,在这一背景下 ,对现有浇花装置缺陷进行了改进 ,设计出基于STM32单片机的全 自动家用浇花机器人。该设计主要由机械结构和控制系统构成 ,机械结构通过麦克纳姆轮底盘与喷洒装置的结合实现机器...

关键字: STM32 麦克纳姆轮 安全可靠 通过性强

用c++编程似乎是让你的Arduino项目起步的障碍吗?您想要一种更直观的微控制器编程方式吗?那你需要了解一下Visuino!这个图形化编程平台将复杂电子项目的创建变成了拖动和连接块的简单任务。在本文中,我们将带您完成使...

关键字: Visuino Arduino ESP32 STM32

基于STM32与LoRa技术的无线传感网络凭借其低功耗、广覆盖、抗干扰等特性,成为环境监测、工业自动化等场景的核心解决方案。然而,如何在复杂电磁环境中实现高效休眠调度与动态信道优化,成为提升网络能效与可靠性的关键挑战。本...

关键字: STM32 LoRa

在实时控制系统、高速通信协议处理及高精度数据采集等对时间敏感的应用场景中,中断响应延迟的优化直接决定了系统的可靠性与性能上限。STM32系列微控制器凭借其灵活的嵌套向量中断控制器(NVIC)、多通道直接内存访问(DMA)...

关键字: STM32 DMA

数字电源技术向高功率密度、高效率与高动态响应方向加速演进,STM32微控制器凭借其基于DSP库的算法加速能力与对LLC谐振变换器的精准控制架构,成为优化电源动态性能的核心平台。相较于传统模拟控制或通用型数字控制器,STM...

关键字: STM32 数字电源

STM32微控制器凭借其针对电机控制场景的深度优化,成为高精度、高可靠性驱动系统的核心选择。相较于通用型MCU,STM32在电机控制领域的核心优势集中体现在FOC(磁场定向控制)算法的硬件加速引擎与PWM死区时间的动态补...

关键字: STM32 电机控制

无线充电技术加速渗透消费电子与汽车电子领域,基于Qi协议的无线充电发射端开发成为智能设备能量补给的核心课题。传统模拟控制方案存在响应滞后、参数调整困难等问题,而基于STM32的数字PID控制结合FOD(Foreign O...

关键字: STM32 无线充电
关闭