当前位置:首页 > 单片机 > 单片机
[导读]分布式CAN通信网ID分配方法 在介绍本方法前,先构建CAN通信网系统模型:只有一个管理中心节点,其他均为从节点。主节点可与所有从节点之间相互通信,从节点之间不相互通信。CAN通信网采用网桥扩展方式增大网络中的节

分布式CAN通信网ID分配方法

在介绍本方法前,先构建CAN通信网系统模型:只有一个管理中心节点,其他均为从节点。主节点可与所有从节点之间相互通信,从节点之间不相互通信。CAN通信网采用网桥扩展方式增大网络中的节点。

报文帧格式

帧信息

IDE=1

RTR=0

X

X

DLC

扩展帧

远程帧

保留位

帧数据部分长度(不大于8)

帧标

识符

ID28

ID27

ID26

ID25

ID24

ID24

ID22

ID21

DestMACID(目标节点编码)

ID20

ID19

ID18

ID17

ID16

ID15

ID14

ID13

xxxxxxx xxxxxxx


ID12

ID11

ID10

ID9

ID8

ID7

ID6

ID5

SrcMACID(源节点编码)

ID4

ID3

ID2

ID1

ID0

X

X

X


0

保留位



当使用扩展帧进行数据传输时,扩展帧ID由STID+EXID组成。例如,在STM32中设置ExtID=0X1234时,则

CAN_FilterIdHigh=0x0000,CAN_FilterIdLow=(0x1234)X8+4= 0x91A4;

如果设置ExtID=0X5678,则

CAN_FilterMaskIdHigh=(u32(0x5678)X8/(0x10000)=0x0002; CAN_FilterMaskIdLow=(0x5678)X8+4=0xB3C4;(溢出,截高位,剩下的就是这个数)。

为方便计算,我们把ID最后一位直接置为0。ID28~ID01这28位平分,前14位为DestMACID(目标节点),后14位为SrcMACID(源节点)。对于前14位,ID28~ID22作为网桥标号,ID21~ID15作为子网内编号。后14位采用相同编号方式。

其中,地址0000000/0000000设置主地址

网桥编号为, 0000001/xxxxxxx~1101110/xxxxxxx,也就是1~110

网桥内子节点编号为xxxxxxx/0000001~xxxxxxx/1101110,也就是1~110

规定xxxxxxx/0000000,为网桥内广播地址。广播地址,其中,xxxxxxx!=0000000。这主要是为了管理中心向各个从节点采集数据(心跳连接)时使用的。通过网桥内广播,则管理中心最少只需要发送110次查询信息,就可以获取所有井盖终端的井盖当前状态。

例如,某节点地址为0000010/0000100,则表示为网桥2内的第4个节点

如果整个29位的ID设置为0000000/0000000 0000010/0000100 0,则表示数据从网桥2内的第4个节点,发送至管理中心;如果整个29位的ID设置为0000010/0000100 0000000/0000000 0,则表示数据从管理中心,发送至网桥2内的第4个节点。注意,源地址和目的地址必须有一个是管理中心的地址,因为各个井盖节点之间不相互传送数据。


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在嵌入式开发中,STM32的时钟系统因其灵活性和复杂性成为开发者关注的焦点。然而,看似简单的时钟配置背后,隐藏着诸多易被忽视的陷阱,轻则导致系统不稳定,重则引发硬件损坏。本文从时钟源选择、PLL配置、总线时钟分配等关键环...

关键字: STM32 时钟系统

在嵌入式系统开发中,STM32系列微控制器的内部温度传感器因其低成本、高集成度特性,广泛应用于设备自检、环境监测等场景。然而,受芯片工艺差异和电源噪声影响,其原始数据存在±1.5℃的固有误差。本文从硬件配置、校准算法、软...

关键字: STM32 温度传感器

在能源效率与智能化需求双重驱动下,AC-DC转换器的数字控制技术正经历从传统模拟方案向全数字架构的深刻变革。基于STM32微控制器的PFM(脉冲频率调制)+PWM(脉冲宽度调制)混合调制策略,结合动态电压调整(Dynam...

关键字: AC-DC STM32

当前智能家居产品需求不断增长 ,在这一背景下 ,对现有浇花装置缺陷进行了改进 ,设计出基于STM32单片机的全 自动家用浇花机器人。该设计主要由机械结构和控制系统构成 ,机械结构通过麦克纳姆轮底盘与喷洒装置的结合实现机器...

关键字: STM32 麦克纳姆轮 安全可靠 通过性强

用c++编程似乎是让你的Arduino项目起步的障碍吗?您想要一种更直观的微控制器编程方式吗?那你需要了解一下Visuino!这个图形化编程平台将复杂电子项目的创建变成了拖动和连接块的简单任务。在本文中,我们将带您完成使...

关键字: Visuino Arduino ESP32 STM32

基于STM32与LoRa技术的无线传感网络凭借其低功耗、广覆盖、抗干扰等特性,成为环境监测、工业自动化等场景的核心解决方案。然而,如何在复杂电磁环境中实现高效休眠调度与动态信道优化,成为提升网络能效与可靠性的关键挑战。本...

关键字: STM32 LoRa

在实时控制系统、高速通信协议处理及高精度数据采集等对时间敏感的应用场景中,中断响应延迟的优化直接决定了系统的可靠性与性能上限。STM32系列微控制器凭借其灵活的嵌套向量中断控制器(NVIC)、多通道直接内存访问(DMA)...

关键字: STM32 DMA

数字电源技术向高功率密度、高效率与高动态响应方向加速演进,STM32微控制器凭借其基于DSP库的算法加速能力与对LLC谐振变换器的精准控制架构,成为优化电源动态性能的核心平台。相较于传统模拟控制或通用型数字控制器,STM...

关键字: STM32 数字电源

STM32微控制器凭借其针对电机控制场景的深度优化,成为高精度、高可靠性驱动系统的核心选择。相较于通用型MCU,STM32在电机控制领域的核心优势集中体现在FOC(磁场定向控制)算法的硬件加速引擎与PWM死区时间的动态补...

关键字: STM32 电机控制

无线充电技术加速渗透消费电子与汽车电子领域,基于Qi协议的无线充电发射端开发成为智能设备能量补给的核心课题。传统模拟控制方案存在响应滞后、参数调整困难等问题,而基于STM32的数字PID控制结合FOD(Foreign O...

关键字: STM32 无线充电
关闭