当前位置:首页 > 单片机 > 单片机
[导读]本例将实现stm32的按键扫描功能。操作寄存器stm32的I/O口作为输入使用时,是通过读取GPIOx -> IDR 寄存器的内容来读取I/O口状态的。IDR寄存器各位描述如下:由于systick不能像库函数那样方便的产生中断,通过查询sys

本例将实现stm32的按键扫描功能。

操作寄存器

stm32的I/O口作为输入使用时,是通过读取GPIOx -> IDR 寄存器的内容来读取I/O口状态的。

IDR寄存器各位描述如下:

由于systick不能像库函数那样方便的产生中断,通过查询systick状态位后,再查询各管脚状态反而更为不方便,所以和库函数方法不一样,直接查询了管脚状态来检测按键。

代码中调用 PAout(x) 、 PAin(x)等函数 在sys.h文件中,参见:(sys.h 代码参照stm32 直接操作寄存器开发环境配置)

直接操作寄存器代码:

#include#include"system.h"//Key按键端口定义#definekey0PAin(0)//PA0#definekey1PAin(1)//PA1#definekey2PAin(2)//PA2#definekey3PAin(3)//PA3//LED按键端口定义#defineLED0PAout(4)//PA4#defineLED1PAout(5)//PA5#defineLED2PAout(6)//PA6#defineLED3PAout(7)//PA7voidGpio_Init(void);//初始化函数voidKey_Scan(void);intmain(void){Rcc_Init(9);//系统时钟设置Gpio_Init();//初始化与LED连接的硬件接口while(1){Key_Scan();}}voidKey_Scan(void){if(key0==0||key1==0||key2==0||key3==0)//if(GPIOA->IDR!=0x000F){delay(10000);//去抖动if(key0==0){while(key0==0);//检测按键松开LED0=!LED0;}if(key1==0){while(key1==0);LED1=!LED1;}if(key2==0){while(key2==0);LED2=!LED2;}if(key3==0){while(key3==0);LED3=!LED3;}}}voidGpio_Init(void){RCC->APB2ENR|=1<<2;//使能PORTA时钟GPIOA->CRL&=0X0000FFFF;//PA0~3设置为浮空输入,PA4~7设置为推挽输出GPIOA->CRL|=0X33334444;}


库函数操作

学过EDA都应该知道一个概念叫状态机,触发某一条件后进入另一状态,再触发一个条件就进入下一状态,不满足条件就进入初态,或者不改变状态。实现按键扫描的思路,大致如此。

Systick 产生一个20ms的定时,在中断中去查询各个管脚的按键是否按下。有按键按下,进入状态1.

如果按下,判断是否是抖动,是则返回状态0,不是则判断是哪个管脚按键按下,实现相应功能后进入状态2.

在状态2中,检测按键是否松开,松开则返回状态0,否则不改变状态。

代码如下: main.c


#include"stm32f10x.h"#defineKEYPORTGPIOA#defineKEY0GPIO_Pin_3#defineKEY1GPIO_Pin_1#defineKEY2GPIO_Pin_2#defineKEY3GPIO_Pin_0typedefenum{KeyScanState_0=0x00,KeyScanState_1=0x01,KeyScanState_2=0x02,}KeyScanState_Typedef;KeyScanState_TypedefKeyScanState;voidRCC_Configuration(void);voidGPIO_Configuration(void);voidSysTick_Set(vu32x);intmain(void){RCC_Configuration();GPIO_Configuration();SysTick_Set(20000);while(1);}voidSysTick_Handler(void){vu16keyState;keyState=GPIO_ReadInputData(KEYPORT)&0x000f;switch(KeyScanState){caseKeyScanState_0:{if(keyState!=0x000f){KeyScanState=KeyScanState_1;}break;}caseKeyScanState_1:{if(keyState!=0x000f){if(GPIO_ReadInputDataBit(KEYPORT,KEY0)==0){GPIO_WriteBit(GPIOA,GPIO_Pin_4,(BitAction)(1-GPIO_ReadOutputDataBit(GPIOA,GPIO_Pin_4)));}elseif(GPIO_ReadInputDataBit(KEYPORT,KEY1)==0){GPIO_WriteBit(GPIOA,GPIO_Pin_5,(BitAction)(1-GPIO_ReadOutputDataBit(GPIOA,GPIO_Pin_5)));}elseif(GPIO_ReadInputDataBit(KEYPORT,KEY2)==0){GPIO_WriteBit(GPIOA,GPIO_Pin_6,(BitAction)(1-GPIO_ReadOutputDataBit(GPIOA,GPIO_Pin_6)));}elseif(GPIO_ReadInputDataBit(KEYPORT,KEY3)==0){GPIO_WriteBit(GPIOA,GPIO_Pin_7,(BitAction)(1-GPIO_ReadOutputDataBit(GPIOA,GPIO_Pin_7)));}KeyScanState=KeyScanState_2;}else{KeyScanState=KeyScanState_0;}break;}caseKeyScanState_2:{if(keyState==0x000f){KeyScanState=KeyScanState_0;}break;}}}voidSysTick_Set(vu32x){if(SysTick_Config(x*72))//配置错误返回1,max16777216{GPIO_SetBits(GPIOA,GPIO_Pin_7);//错误处理}}voidGPIO_Configuration(void){GPIO_InitTypeDefGPIO_InitStructure;GPIO_InitStructure.GPIO_Pin=GPIO_Pin_4|GPIO_Pin_5|GPIO_Pin_6|GPIO_Pin_7;GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz;GPIO_InitStructure.GPIO_Mode=GPIO_Mode_Out_PP;GPIO_Init(GPIOA,&GPIO_InitStructure);GPIO_InitStructure.GPIO_Pin=GPIO_Pin_0|GPIO_Pin_1|GPIO_Pin_2|GPIO_Pin_3;GPIO_InitStructure.GPIO_Mode=GPIO_Mode_IN_FLOATING;GPIO_Init(GPIOA,&GPIO_InitStructure);}voidRCC_Configuration(void){/*定义枚举类型变量HSEStartUpStatus*/ErrorStatusHSEStartUpStatus;/*复位系统时钟设置*/RCC_DeInit();/*开启HSE*/RCC_HSEConfig(RCC_HSE_ON);/*等待HSE起振并稳定*/HSEStartUpStatus=RCC_WaitForHSEStartUp();/*判断HSE起是否振成功,是则进入if()内部*/if(HSEStartUpStatus==SUCCESS){/*选择HCLK(AHB)时钟源为SYSCLK1分频*/RCC_HCLKConfig(RCC_SYSCLK_Div1);/*选择PCLK2时钟源为HCLK(AHB)1分频*/RCC_PCLK2Config(RCC_HCLK_Div1);/*选择PCLK1时钟源为HCLK(AHB)2分频*/RCC_PCLK1Config(RCC_HCLK_Div2);/*设置FLASH延时周期数为2*/FLASH_SetLatency(FLASH_Latency_2);/*使能FLASH预取缓存*/FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);/*选择锁相环(PLL)时钟源为HSE1分频,倍频数为9,则PLL输出频率为8MHz*9=72MHz*/RCC_PLLConfig(RCC_PLLSource_HSE_Div1,RCC_PLLMul_9);/*使能PLL*/RCC_PLLCmd(ENABLE);/*等待PLL输出稳定*/while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY)==RESET);/*选择SYSCLK时钟源为PLL*/RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);/*等待PLL成为SYSCLK时钟源*/while(RCC_GetSYSCLKSource()!=0x08);}/*打开APB2总线上的GPIOA时钟*/RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE);//RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2,ENABLE);}

本例中将Systick 中断处理函数从 stm32f10x_it.c中移至了main.c中 避免了需要在stm32f10x_it.c中声明外部变量等操作。


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在嵌入式开发中,STM32的时钟系统因其灵活性和复杂性成为开发者关注的焦点。然而,看似简单的时钟配置背后,隐藏着诸多易被忽视的陷阱,轻则导致系统不稳定,重则引发硬件损坏。本文从时钟源选择、PLL配置、总线时钟分配等关键环...

关键字: STM32 时钟系统

在嵌入式系统开发中,STM32系列微控制器的内部温度传感器因其低成本、高集成度特性,广泛应用于设备自检、环境监测等场景。然而,受芯片工艺差异和电源噪声影响,其原始数据存在±1.5℃的固有误差。本文从硬件配置、校准算法、软...

关键字: STM32 温度传感器

在能源效率与智能化需求双重驱动下,AC-DC转换器的数字控制技术正经历从传统模拟方案向全数字架构的深刻变革。基于STM32微控制器的PFM(脉冲频率调制)+PWM(脉冲宽度调制)混合调制策略,结合动态电压调整(Dynam...

关键字: AC-DC STM32

当前智能家居产品需求不断增长 ,在这一背景下 ,对现有浇花装置缺陷进行了改进 ,设计出基于STM32单片机的全 自动家用浇花机器人。该设计主要由机械结构和控制系统构成 ,机械结构通过麦克纳姆轮底盘与喷洒装置的结合实现机器...

关键字: STM32 麦克纳姆轮 安全可靠 通过性强

用c++编程似乎是让你的Arduino项目起步的障碍吗?您想要一种更直观的微控制器编程方式吗?那你需要了解一下Visuino!这个图形化编程平台将复杂电子项目的创建变成了拖动和连接块的简单任务。在本文中,我们将带您完成使...

关键字: Visuino Arduino ESP32 STM32

基于STM32与LoRa技术的无线传感网络凭借其低功耗、广覆盖、抗干扰等特性,成为环境监测、工业自动化等场景的核心解决方案。然而,如何在复杂电磁环境中实现高效休眠调度与动态信道优化,成为提升网络能效与可靠性的关键挑战。本...

关键字: STM32 LoRa

在实时控制系统、高速通信协议处理及高精度数据采集等对时间敏感的应用场景中,中断响应延迟的优化直接决定了系统的可靠性与性能上限。STM32系列微控制器凭借其灵活的嵌套向量中断控制器(NVIC)、多通道直接内存访问(DMA)...

关键字: STM32 DMA

数字电源技术向高功率密度、高效率与高动态响应方向加速演进,STM32微控制器凭借其基于DSP库的算法加速能力与对LLC谐振变换器的精准控制架构,成为优化电源动态性能的核心平台。相较于传统模拟控制或通用型数字控制器,STM...

关键字: STM32 数字电源

STM32微控制器凭借其针对电机控制场景的深度优化,成为高精度、高可靠性驱动系统的核心选择。相较于通用型MCU,STM32在电机控制领域的核心优势集中体现在FOC(磁场定向控制)算法的硬件加速引擎与PWM死区时间的动态补...

关键字: STM32 电机控制

无线充电技术加速渗透消费电子与汽车电子领域,基于Qi协议的无线充电发射端开发成为智能设备能量补给的核心课题。传统模拟控制方案存在响应滞后、参数调整困难等问题,而基于STM32的数字PID控制结合FOD(Foreign O...

关键字: STM32 无线充电
关闭