当前位置:首页 > 单片机 > 单片机
[导读]描述:用ADC连续采集11路模拟信号,并由DMA传输到内存。ADC配置为扫描并且连续转换模式,ADC的时钟配置为12MHZ。在每次转换结束后,由DMA循环将转换的数据传输到内存中。ADC可以连续采集N次求平均值。最后通过串口传

描述:用ADC连续采集11路模拟信号,并由DMA传输到内存。ADC配置为扫描并且连续转换模式,ADC的时钟配置为12MHZ。在每次转换结束后,由DMA循环将转换的数据传输到内存中。ADC可以连续采集N次求平均值。最后通过串口传输出最后转换的结果。
程序如下:
#i nclude "stm32f10x.h" //这个头文件包括STM32F10x所有外围寄存器、位、内存映射的定义
#i nclude "eval.h" //头文件(包括串口、按键、LED的函数声明)
#i nclude "SysTickDelay.h"
#i nclude "UART_INTERFACE.h"
#i nclude

#define N 50 //每通道采50次
#define M 12 //为12个通道

vu16 AD_Value[N][M]; //用来存放ADC转换结果,也是DMA的目标地址
vu16 After_filter[M]; //用来存放求平均值之后的结果
int i;



void GPIO_Configuration(void)
{
GPIO_InitTypeDef GPIO_InitStructure;

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; //因为USART1管脚是以复用的形式接到GPIO口上的,所以使用复用推挽式输出
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA, &GPIO_InitStructure);


GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_Init(GPIOA, &GPIO_InitStructure);



//PA0/1/2 作为模拟通道输入引脚
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0| GPIO_Pin_1|GPIO_Pin_2|GPIO_Pin_3;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; //模拟输入引脚
GPIO_Init(GPIOA, &GPIO_InitStructure);

//PB0/1 作为模拟通道输入引脚
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0|GPIO_Pin_1;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; //模拟输入引脚
GPIO_Init(GPIOB, &GPIO_InitStructure);

//PC0/1/2/3/4/5 作为模拟通道输入引脚
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0|GPIO_Pin_1|GPIO_Pin_2|GPIO_Pin_3|GPIO_Pin_4|GPIO_Pin_5;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; //模拟输入引脚
GPIO_Init(GPIOC, &GPIO_InitStructure);
}

}


void RCC_Configuration(void)
{
ErrorStatus HSEStartUpStatus;

RCC_DeInit(); //RCC 系统复位
RCC_HSEConfig(RCC_HSE_ON); //开启HSE
HSEStartUpStatus = RCC_WaitForHSEStartUp(); //等待HSE准备好
if(HSEStartUpStatus == SUCCESS)
{
FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable); //Enable Prefetch Buffer
FLASH_SetLatency(FLASH_Latency_2); //Set 2 Latency cycles
RCC_HCLKConfig(RCC_SYSCLK_Div1); //AHB clock = SYSCLK
RCC_PCLK2Config(RCC_HCLK_Div1); //APB2 clock = HCLK
RCC_PCLK1Config(RCC_HCLK_Div2); //APB1 clock = HCLK/2
RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_6); //PLLCLK = 12MHz * 6 = 72 MHz
RCC_PLLCmd(ENABLE); //Enable PLL
while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET); //Wait till PLL is ready
RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK); //Select PLL as system clock source
while(RCC_GetSYSCLKSource() != 0x08); //Wait till PLL is used as system clock source

RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA|RCC_APB2Periph_GPIOB
| RCC_APB2Periph_GPIOC |RCC_APB2Periph_ADC1 | RCC_APB2Periph_AFIO |RCC_APB2Periph_USART1, ENABLE ); //使能ADC1通道时钟,各个管脚时钟

RCC_ADCCLKConfig(RCC_PCLK2_Div6); //72M/6=12,ADC最大时间不能超过14M
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE); //使能DMA传输

}
}


void ADC1_Configuration(void)
{
ADC_InitTypeDef ADC_InitStructure;

ADC_DeInit(ADC1); //将外设 ADC1 的全部寄存器重设为缺省值


ADC_InitStructure.ADC_Mode = ADC_Mode_Independent; //ADC工作模式:ADC1和ADC2工作在独立模式
ADC_InitStructure.ADC_ScanConvMode =ENABLE; //模数转换工作在扫描模式
ADC_InitStructure.ADC_ContinuousConvMode = ENABLE; //模数转换工作在连续转换模式
ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None; //外部触发转换关闭
ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; //ADC数据右对齐
ADC_InitStructure.ADC_NbrOfChannel = M; //顺序进行规则转换的ADC通道的数目
ADC_Init(ADC1, &ADC_InitStructure); //根据ADC_InitStruct中指定的参数初始化外设ADCx的寄存器


//设置指定ADC的规则组通道,设置它们的转化顺序和采样时间
//ADC1,ADC通道x,规则采样顺序值为y,采样时间为239.5周期
ADC_RegularChannelConfig(ADC1, ADC_Channel_0, 1, ADC_SampleTime_239Cycles5 );
ADC_RegularChannelConfig(ADC1, ADC_Channel_1, 2, ADC_SampleTime_239Cycles5 );
ADC_RegularChannelConfig(ADC1, ADC_Channel_2, 3, ADC_SampleTime_239Cycles5 );
ADC_RegularChannelConfig(ADC1, ADC_Channel_3, 4, ADC_SampleTime_239Cycles5 );
ADC_RegularChannelConfig(ADC1, ADC_Channel_8, 5, ADC_SampleTime_239Cycles5 );
ADC_RegularChannelConfig(ADC1, ADC_Channel_9, 6, ADC_SampleTime_239Cycles5 );
ADC_RegularChannelConfig(ADC1, ADC_Channel_10, 7, ADC_SampleTime_239Cycles5 );
ADC_RegularChannelConfig(ADC1, ADC_Channel_11, 8, ADC_SampleTime_239Cycles5 );
ADC_RegularChannelConfig(ADC1, ADC_Channel_12, 9, ADC_SampleTime_239Cycles5 );
ADC_RegularChannelConfig(ADC1, ADC_Channel_13, 10, ADC_SampleTime_239Cycles5 );
ADC_RegularChannelConfig(ADC1, ADC_Channel_14, 11, ADC_SampleTime_239Cycles5 );
ADC_RegularChannelConfig(ADC1, ADC_Channel_15, 12, ADC_SampleTime_239Cycles5 );

// 开启ADC的DMA支持(要实现DMA功能,还需独立配置DMA通道等参数)
ADC_DMACmd(ADC1, ENABLE);


ADC_Cmd(ADC1, ENABLE); //使能指定的ADC1

ADC_ResetCalibration(ADC1); //复位指定的ADC1的校准寄存器

while(ADC_GetResetCalibrationStatu

s(ADC1)); //获取ADC1复位校准寄存器的状态,设置状态则等待


ADC_StartCalibration(ADC1); //开始指定ADC1的校准状态

while(ADC_GetCalibrationStatus(ADC1)); //获取指定ADC1的校准程序,设置状态则等待


}


void DMA_Configuration(void)
{

DMA_InitTypeDef DMA_InitStructure;
DMA_DeInit(DMA1_Channel1); //将DMA的通道1寄存器重设为缺省值
DMA_InitStructure.DMA_PeripheralBaseAddr = (u32)&ADC1->DR; //DMA外设ADC基地址
DMA_InitStructure.DMA_MemoryBaseAddr = (u32)&AD_Value; //DMA内存基地址
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC; //内存作为数据传输的目的地
DMA_InitStructure.DMA_BufferSize = N*M; //DMA通道的DMA缓存的大小
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; //外设地址寄存器不变
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; //内存地址寄存器递增
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord; //数据宽度为16位
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord; //数据宽度为16位
DMA_InitStructure.DMA_Mode = DMA_Mode_Circular; //工作在循环缓存模式
DMA_InitStructure.DMA_Priority = DMA_Priority_High; //DMA通道 x拥有高优先级
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable; //DMA通道x没有设置为内存到内存传输
DMA_Init(DMA1_Channel1, &DMA_InitStructure); //根据DMA_InitStruct中指定的参数初始化DMA的通道

}


//配置所有外设
void Init_All_Periph(void)
{

RCC_Configuration();

GPIO_Configuration();

ADC1_Configuration();

DMA_Configuration();

//USART1_Configuration();
USART_Configuration(9600);


}



u16 GetVolt(u16 advalue)

{

return (u16)(advalue * 330 / 4096); //求的结果扩大了100倍,方便下面求出小数

}




void filter(void)
{
int sum = 0;
u8 count;
for(i=0;i<12;i++)

{

for ( count=0;count

{

sum += AD_Value[count][i];

}

After_filter[i]=sum/N;

sum=0;
}

}




int main(void)
{

u16 value[M];

init_All_Periph();
SysTick_Initaize();


ADC_SoftwareStartConvCmd(ADC1, ENABLE);
DMA_Cmd(DMA1_Channel1, ENABLE); //启动DMA通道
while(1)
{
while(USART_GetFlagStatus(USART1,USART_FLAG_TXE)==RESET);//等待传输完成否则第一位数据容易丢失

filter();
for(i=0;i<12;i++)
{
value[i]= GetVolt(After_filter[i]);

printf("value[%d]:t%d.%dvn",i,value[i]/100,value[i]0) ;
delay_ms(100);
}
}

}
总结
该程序中的两个宏定义,M和N,分别代表有多少个通道,每个通道转换多少次,可以修改其值。
曾出现的问题:配置时钟时要知道外部晶振是多少,以便准确配置时钟。将转换值由二进制转换为十进制时,要先扩大100倍,方便显示小数。最后串口输出时在 printf语句之前加这句代码,防止输出的第一位数据丢失:while(USART_GetFlagStatus(USART1,USART_FLAG_TXE)==RESET);


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在嵌入式开发中,STM32的时钟系统因其灵活性和复杂性成为开发者关注的焦点。然而,看似简单的时钟配置背后,隐藏着诸多易被忽视的陷阱,轻则导致系统不稳定,重则引发硬件损坏。本文从时钟源选择、PLL配置、总线时钟分配等关键环...

关键字: STM32 时钟系统

在嵌入式系统开发中,STM32系列微控制器的内部温度传感器因其低成本、高集成度特性,广泛应用于设备自检、环境监测等场景。然而,受芯片工艺差异和电源噪声影响,其原始数据存在±1.5℃的固有误差。本文从硬件配置、校准算法、软...

关键字: STM32 温度传感器

在能源效率与智能化需求双重驱动下,AC-DC转换器的数字控制技术正经历从传统模拟方案向全数字架构的深刻变革。基于STM32微控制器的PFM(脉冲频率调制)+PWM(脉冲宽度调制)混合调制策略,结合动态电压调整(Dynam...

关键字: AC-DC STM32

当前智能家居产品需求不断增长 ,在这一背景下 ,对现有浇花装置缺陷进行了改进 ,设计出基于STM32单片机的全 自动家用浇花机器人。该设计主要由机械结构和控制系统构成 ,机械结构通过麦克纳姆轮底盘与喷洒装置的结合实现机器...

关键字: STM32 麦克纳姆轮 安全可靠 通过性强

用c++编程似乎是让你的Arduino项目起步的障碍吗?您想要一种更直观的微控制器编程方式吗?那你需要了解一下Visuino!这个图形化编程平台将复杂电子项目的创建变成了拖动和连接块的简单任务。在本文中,我们将带您完成使...

关键字: Visuino Arduino ESP32 STM32

基于STM32与LoRa技术的无线传感网络凭借其低功耗、广覆盖、抗干扰等特性,成为环境监测、工业自动化等场景的核心解决方案。然而,如何在复杂电磁环境中实现高效休眠调度与动态信道优化,成为提升网络能效与可靠性的关键挑战。本...

关键字: STM32 LoRa

在实时控制系统、高速通信协议处理及高精度数据采集等对时间敏感的应用场景中,中断响应延迟的优化直接决定了系统的可靠性与性能上限。STM32系列微控制器凭借其灵活的嵌套向量中断控制器(NVIC)、多通道直接内存访问(DMA)...

关键字: STM32 DMA

数字电源技术向高功率密度、高效率与高动态响应方向加速演进,STM32微控制器凭借其基于DSP库的算法加速能力与对LLC谐振变换器的精准控制架构,成为优化电源动态性能的核心平台。相较于传统模拟控制或通用型数字控制器,STM...

关键字: STM32 数字电源

STM32微控制器凭借其针对电机控制场景的深度优化,成为高精度、高可靠性驱动系统的核心选择。相较于通用型MCU,STM32在电机控制领域的核心优势集中体现在FOC(磁场定向控制)算法的硬件加速引擎与PWM死区时间的动态补...

关键字: STM32 电机控制

无线充电技术加速渗透消费电子与汽车电子领域,基于Qi协议的无线充电发射端开发成为智能设备能量补给的核心课题。传统模拟控制方案存在响应滞后、参数调整困难等问题,而基于STM32的数字PID控制结合FOD(Foreign O...

关键字: STM32 无线充电
关闭