当前位置:首页 > 单片机 > 单片机
[导读]void RCC_DeInit(void){RCC->CR |= (uint32_t)0x00000001; //开启内部8MHz时钟#ifndef STM32F10X_CL //STM32F10X_CL指的是STM32互联系列微处理器RCC->CFGR &= (uint32_t)0xF8FF0000; //其它类型处理器的CFGR寄存器中

void RCC_DeInit(void)

{

RCC->CR |= (uint32_t)0x00000001; //开启内部8MHz时钟

#ifndef STM32F10X_CL //STM32F10X_CL指的是STM32互联系列微处理器

RCC->CFGR &= (uint32_t)0xF8FF0000; //其它类型处理器的CFGR寄存器中27-31位是保留位,24-26为MCO位

#else//而互联型处理器的CFGR寄存器中,28-31位是保留位,24-27位属MCO

RCC->CFGR &= (uint32_t)0xF0FF0000; //初始化CFGR寄存器,详见注释第1条

#endif

RCC->CR &= (uint32_t)0xFEF6FFFF; //初始化CR寄存器,详见注释第2条

RCC->CR &= (uint32_t)0xFFFBFFFF; //位18=0,HSE没有旁路,只有在HSE关闭时才可以设置

RCC->CFGR &= (uint32_t)0xFF80FFFF; //设置CFGR寄存器,详见注释第3条

#ifdef STM32F10X_CL //互联型微控制器的设置

RCC->CR &= (uint32_t)0xEBFFFFFF;

RCC->CIR = 0x00FF0000;

RCC->CFGR2 = 0x00000000;

#elif defined (STM32F10X_LD_VL) || defined (STM32F10X_MD_VL) || defined (STM32F10X_HD_VL)

RCC->CIR = 0x009F0000; //初始化CIR时钟中断寄存器,详见注释第4条

RCC->CFGR2 = 0x00000000;

#else

RCC->CIR = 0x009F0000;

#endif

}

注释:

1、位26(27)-24=000: 微控制器没有时钟输出;

位15-14=00: PCLK2(APB2时钟)二分频后作为ADC时钟;

位13-11=000: HCLK不分频,即APB2高速时钟PCLK2等于AHB时钟;

位10-8=000: 低速APB1时钟(PCLK1)不分频;

位7-4=0000: AHB时钟不分频,等于系统时钟SYSCLK;

位3-2=00: HSI(内部高速时钟)作为系统时钟;

位1-0=00:HSI(内部高速时钟)作为系统时钟。

2、位24=0: PLL关闭;

位19=0: 时钟检测器关闭,当外部时钟就绪后开启;

位16=0: 外部时钟HSE关闭。

3、位22=0:PLL时钟1.5倍分频作为USB时钟;

位21-18=0000: PLL二倍频输出,只有PLL关闭时才可以设置;

位17=0: HSE不分频,只有PLL关闭时才可以设置;

位16=0:HSI时钟2分频后作为PLL输入时钟,只有PLL关闭时才可以设置;

4、位23=1:清除时钟安全系统中断标志位;

位20=1: 清除PLL就绪中断标志位;

位19=1: 清除HSE就绪中断标志位;

位18=1:清除HSI就绪中断标志位;

位17=1: 清除LSE就绪中断标志位;

位16=1:清除LSI就绪中断标志位。

在STM32中有5个时钟源:①、HSI是高速内部时钟,RC震荡器,频率为 8MHz。②、HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率范围为4MHz~16MHz。③、LSI是低速内部时钟,RC振荡器,频率为40kHz。④、LSE是低速外部时钟,接频率为32.768kHz的石英晶体。⑤、PLL为锁相环倍频输出,其时钟输入源可选择为HIS/2、HSE或HSE/2。倍频可选择为2~16倍,但其输出频率最大不得超过72MHz。

系统时钟SYSCLK,它是供STM32中绝大部分器件工作的时钟源,系统时钟可选择为PLL输出、HSI或者HSE。系统时钟的做大频率为72MHz,它通过AHB分频器分频后送给个模块使用,AHB分频器可选择1、2、4、8、16、32、64、128、256、512分频。AHB分频器输出的时钟送给5大模块使用:

1.送给AHB总线、内核、内存和DMA使用的HCLK时钟。2.通过8分频后送给Cortex的系统定时器时钟。3.直接送给Cortex的空闲运行时钟PCLK。4.送给APB1分频器。APB1分频器可选择1、2、4、8、16分频,其输出一路供APB1外设使用(PCLK1,最大频率36MHz),另一路送给定时器(Timer)2、3、4倍频器使用。该倍频器可选择1或者2倍频,时钟输出供定时器2、3、4使用。5.送给APB2分频器。APB2分频器可选择1、2、4、8、16分频,其输出一路供APB2外设使用(PCLK2,最大频率72MHz),另一路送给定时器(Timer)1倍频器使用。该倍频器可选择1或者2倍频,时钟输出供定时器1使用。另外,APB2分频器还有一路输出供ADC分频器使用,分频后送给ADC模块使用。ADC分频器可选择为2、4、6、8分频。连接在APB1(低速外设)上的设备有:电源接口、备份接口、CAN、USB、I2C1、I2C2、UART2、UART3、SPI2、窗口看门狗、Timer2、Timer3、Timer4。连接在APB2(高速外设)上的设备有:UART1、SPI1、Timer1、ADC1、ADC2、所有普通IO口、第二功能IO口。寄存器描述:typedef struct
{
vu32 CR; //HSI,HSE,CSS,PLL等的使能
vu32 CFGR; //PLL等的时钟源选择以及分频系数设定
vu32 CIR; //清除/使能时钟就绪中断
vu32 APB2RSTR; //APB2线上外设复位寄存器
vu32 APB1RSTR; //APB1线上外设复位寄存器
vu32 AHBENR; //DMA,SDIO等时钟使能
vu32 APB2ENR; //APB2线上外设时钟使能
vu32 APB1ENR; //APB1线上外设时钟使能
vu32 BDCR; //备份域控制寄存器
vu32 CSR;
} RCC_TypeDef;

时钟控制寄存器(RCC_CR)

31~26252423~2019181716保留PLLRDYPLLON保留CSSONHSEBYPHSERDYHSEON

eg:RCC->CR|=0x00010000;//外部高速时钟使能HSEON

RCC->CR|=0x01000000;//使能PLLON

RCC->CR>>25;//等待PLL锁定

时钟配置寄存器(RCC_CFGR)

31:2726:24232221:181716保留MCO[2:0]保留USBPREPLLMUL[3:0]PLLXTPREPLLSRC15:1413:1110:87:43:21:0ADCPRE[1:0]PPRE2[2:0]PPRE1[2:0]HPRE[3:0]SWS[1:0]SW[1:0]

位26:24

MCO: 微控制器时钟输出 (Microcontroller clock output)

由软件置’1’或清零。

0xx:没有时钟输出;

100:系统时钟(SYSCLK)输出;

101:内部RC振荡器时钟(HSI)输出;

110:外部振荡器时钟(HSE)输出;

111:PLL时钟2分频后输出。

位22

USBPRE:USB预分频 (USB prescaler)

由软件置’1’或清’0’来产生48MHz的USB时钟。在RCC_APB1ENR寄存器中使能USB时钟之前,必须保证该位已经有效。如果USB时钟被使能,该位不能被清零。

0:PLL时钟1.5倍分频作为USB时钟

1:PLL时钟直接作为USB时钟

位21:18

PLLMUL:PLL倍频系数 (PLL multiplication factor)

由软件设置来确定PLL倍频系数。只有在PLL关闭的情况下才可被写入。

注意:PLL的输出频率不能超过72MHz

0000:PLL 2倍频输出1000:PLL 10倍频输出

0001:PLL 3倍频输出1001:PLL 11倍频输出

0010:PLL 4倍频输出1010:PLL 12倍频输出

0011:PLL 5倍频输出1011:PLL 13倍频输出

0100:PLL 6倍频输出1100:PLL 14倍频输出

0101:PLL 7倍频输出1101:PLL 15倍频输出

0110:PLL 8倍频输出1110:PLL 16倍频输出

0111:PLL 9倍频输出1111:PLL 16倍频输出

位17

PLLXTPRE:HSE分频器作为PLL输入 (HSE divider for PLL entry)

由软件置’1’或清’0’来分频HSE后作为PLL输入时钟。只能在关闭PLL时才能写入此位。

0:HSE不分频

1:HSE 2分频

位16

PLLSRC:PLL输入时钟源 (PLL entry clock source)

由软件置’1’或清’0’来选择PLL输入时钟源。只能在关闭PLL时才能写入此位。

0:HSI振荡器时钟经2分频后作为PLL输入时钟

1:HSE时钟作为PLL输入时钟。

位15:14

ADCPRE[1:0]:ADC预分频 (ADC prescaler)

由软件置’1’或清’0’来确定ADC时钟频率

00:PCLK2 2分频后作为ADC时钟

01:PCLK2 4分频后作为ADC时钟

10:PCLK2 6分频后作为ADC时钟

11:PCLK2 8分频后作为ADC时钟

位13:11

PPRE2[2:0]:高速APB预分频(APB2) (APB high-speed prescaler (APB2))

由软件置’1’或清’0’来控制高速APB2时钟(PCLK2)的预分频系数。

0xx:HCLK不分频

100:HCLK 2分频

101:HCLK 4分频

110:HCLK 8分频

111:HCLK 16分频

位10:8

PPRE1[2:0]:低速APB预分频(APB1) (APB low-speed prescaler (APB1))

由软件置’1’或清’0’来控制低速APB1时钟(PCLK1)的预分频系数。

警告:软件必须保证APB1时钟频率不超过36MHz。

0xx:HCLK不分频

100:HCLK 2分频

101:HCLK 4分频

110:HCLK 8分频

111:HCLK 16分频

位7:4

HPRE[3:0]: AHB预分频 (AHB Prescaler)

由软件置’1’或清’0’来控制AHB时钟的预分频系数。

0xxx:SYSCLK不分频

1000:SYSCLK 2分频1100:SYSCLK 64分频

1001:SYSCLK 4分频1101:SYSCLK 128分频

1010:SYSCLK 8分频1110:SYSCLK 256分频

1011:SYSCLK 16分频1111:SYSCLK 512分频

位3:2

SWS[1:0]:系统时钟切换状态 (System clock switch status)

由硬件置’1’或清’0’来指示哪一个时钟源被作为系统时钟。

00:HSI作为系统时钟;

01:HSE作为系统时钟;

10:PLL输出作为系统时钟;

11:不可用。

位1:0

SW[1:0]:系统时钟切换 (System clock switch)

由软件置’1’或清’0’来选择系统时钟源。

00:HSI作为系统时钟;

01:HSE作为系统时钟;

10:PLL输出作为系统时钟;

11:不可用

eg: RCC->CFGR=0x00000400;//APB1=DIV2;APB2=DIV1(不分频);AHB=DIV1(不分频);

根据STM32库

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在嵌入式开发中,STM32的时钟系统因其灵活性和复杂性成为开发者关注的焦点。然而,看似简单的时钟配置背后,隐藏着诸多易被忽视的陷阱,轻则导致系统不稳定,重则引发硬件损坏。本文从时钟源选择、PLL配置、总线时钟分配等关键环...

关键字: STM32 时钟系统

在嵌入式系统开发中,STM32系列微控制器的内部温度传感器因其低成本、高集成度特性,广泛应用于设备自检、环境监测等场景。然而,受芯片工艺差异和电源噪声影响,其原始数据存在±1.5℃的固有误差。本文从硬件配置、校准算法、软...

关键字: STM32 温度传感器

在能源效率与智能化需求双重驱动下,AC-DC转换器的数字控制技术正经历从传统模拟方案向全数字架构的深刻变革。基于STM32微控制器的PFM(脉冲频率调制)+PWM(脉冲宽度调制)混合调制策略,结合动态电压调整(Dynam...

关键字: AC-DC STM32

当前智能家居产品需求不断增长 ,在这一背景下 ,对现有浇花装置缺陷进行了改进 ,设计出基于STM32单片机的全 自动家用浇花机器人。该设计主要由机械结构和控制系统构成 ,机械结构通过麦克纳姆轮底盘与喷洒装置的结合实现机器...

关键字: STM32 麦克纳姆轮 安全可靠 通过性强

用c++编程似乎是让你的Arduino项目起步的障碍吗?您想要一种更直观的微控制器编程方式吗?那你需要了解一下Visuino!这个图形化编程平台将复杂电子项目的创建变成了拖动和连接块的简单任务。在本文中,我们将带您完成使...

关键字: Visuino Arduino ESP32 STM32

基于STM32与LoRa技术的无线传感网络凭借其低功耗、广覆盖、抗干扰等特性,成为环境监测、工业自动化等场景的核心解决方案。然而,如何在复杂电磁环境中实现高效休眠调度与动态信道优化,成为提升网络能效与可靠性的关键挑战。本...

关键字: STM32 LoRa

在实时控制系统、高速通信协议处理及高精度数据采集等对时间敏感的应用场景中,中断响应延迟的优化直接决定了系统的可靠性与性能上限。STM32系列微控制器凭借其灵活的嵌套向量中断控制器(NVIC)、多通道直接内存访问(DMA)...

关键字: STM32 DMA

数字电源技术向高功率密度、高效率与高动态响应方向加速演进,STM32微控制器凭借其基于DSP库的算法加速能力与对LLC谐振变换器的精准控制架构,成为优化电源动态性能的核心平台。相较于传统模拟控制或通用型数字控制器,STM...

关键字: STM32 数字电源

STM32微控制器凭借其针对电机控制场景的深度优化,成为高精度、高可靠性驱动系统的核心选择。相较于通用型MCU,STM32在电机控制领域的核心优势集中体现在FOC(磁场定向控制)算法的硬件加速引擎与PWM死区时间的动态补...

关键字: STM32 电机控制

无线充电技术加速渗透消费电子与汽车电子领域,基于Qi协议的无线充电发射端开发成为智能设备能量补给的核心课题。传统模拟控制方案存在响应滞后、参数调整困难等问题,而基于STM32的数字PID控制结合FOD(Foreign O...

关键字: STM32 无线充电
关闭