当前位置:首页 > 单片机 > 单片机
[导读]这两天研究了STM32的低功耗知识,低功耗里主要研究的是STM32的待机模式和停机模式。让单片机进入的待机模式和停机模式比较容易,实验中通过设置中断口PA1来响应待机和停机模式。void EXTI1_IRQHandler(void){if(!GPI

这两天研究了STM32的低功耗知识,低功耗里主要研究的是STM32的待机模式和停机模式。让单片机进入的待机模式和停机模式比较容易,实验中通过设置中断口PA1来响应待机和停机模式。
void EXTI1_IRQHandler(void)
{
if(!GPIO_ReadInputDataBit(GPIOA, GPIO_Pin_1))
{
delay_ms(10);
while(!GPIO_ReadInputDataBit(GPIOA, GPIO_Pin_1));
if(GPIO_ReadInputDataBit(GPIOA, GPIO_Pin_1))
{
EXTI_ClearITPendingBit(EXTI_Line1);

RTC_SetAlarm(RTC_GetCounter()+4);//设置4S后闹钟唤醒
RTC_ITConfig(RTC_IT_ALR, ENABLE);//使能闹钟中断.
RTC_WaitForLastTask();//等待上一次写RTC任务完成

Standby();//进入待机(停机)状态
}
}

}

void Standby()
{
RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR , ENABLE);//开电源管理时钟PWR_Regulator_LowPower

PWR_WakeUpPinCmd(ENABLE);//使能唤醒引脚,默认PA0
PWR_EnterSTANDBYMode();//进入待机
//PWR_EnterSTOPMode(PWR_Regulator_ON,PWR_STOPEntry_WFI|PWR_STOPEntry_WFE);//进入停机
}


进入的待机模式和停机模式很简单,基本一样。那么问题来了。
主要问题有:
1:如何对他们进行唤醒?
2:唤醒的闹钟中断能否执行?
2:唤醒后的程序入口在哪?
通过各种实验和查资料,得到了如下结论:(本实验通过设定RTC_SetAlarm(RTC_GetCounter()+4);为设置4S后进行闹钟唤醒,并开启闹钟中断,手册中可以查到闹钟中断能产生唤醒,故用闹钟中断进行实验)
先研究待机模式下的唤醒,在闹钟中断函数如下:
void RTCAlarm_IRQHandler(void)
{
if(RTC_GetFlagStatus(RTC_IT_ALR))
{
RTC_ClearITPendingBit(RTC_IT_ALR);
RTC_WaitForLastTask();
EXTI_ClearITPendingBit(EXTI_Line17);
if(PWR_GetFlagStatus(PWR_FLAG_WU)!= RESET)
{
PWR_ClearFlag(PWR_FLAG_WU);
}
GPIO_WriteBit(GPIOA, GPIO_Pin_5, 0);//LED指示

}
}
实验结果:PA5的LED不指示,并且从其他LED灯的指示可以知道程序又重新开始运行。也就是被复位。
因此待机模式下的唤醒结论如下:
1:唤醒形式直接产生闹钟中断就能唤醒。
2:唤醒后不会进入闹钟中断函数
3:唤醒后程序复位,重新执行

再研究停机模式下的唤醒,停机模式唤醒和待机唤醒差别很大,开始还以为两者相同,停机唤醒相对复杂些,中途调试了很长时间,才明白了停机唤醒的过程,贴上闹钟中断程序如下:
char Wakeflag=0;
void RTCAlarm_IRQHandler(void)
{
if(RTC_GetFlagStatus(RTC_IT_ALR))
{
EXTI_ClearITPendingBit(EXTI_Line17);
RTC_ClearITPendingBit(RTC_IT_ALR);
RTC_WaitForLastTask();
EXTI_ClearITPendingBit(EXTI_Line7);
EXTI_ClearITPendingBit(EXTI_Line1);//对于程序可能产生的标志位必须的清除干净,不清除会出现唤醒失灵现象!!

if(PWR_GetFlagStatus(PWR_FLAG_WU) != RESET)
{
PWR_ClearFlag(PWR_FLAG_WU);//一般没用
}
SystemInit();//重要,由于停机下对所有时钟关闭,所以唤醒需要重新配置时钟!!
Wakeflag=!Wakeflag;
GPIO_WriteBit(GPIOA, GPIO_Pin_5, Wakeflag);//LED灯指示

}
}
相比待机的闹钟中断是不复杂了很多,停机模式下的唤醒的中断函数需要注意这两点(能得到这两点,耗费了大量时间,终于还是搞定了,嗨皮!!):
1:重要,对于程序可能产生的标志位必须的清除干净,不清除会出现唤醒失灵现象!!
2:重要,由于停机下对所有时钟关闭,所以唤醒需要重新配置时钟!!
实验现象:LED可以产生开通与关断的效果。并且从其他LED的指示可以看到程序没有被复位,而是继续原来运行。
因此停机模式下的唤醒结论如下:
1:唤醒形式产生闹钟中断不一定就唤醒,需要对任何可能的标志位清楚,并且时钟要重新配置。
2:唤醒后进入闹钟中断函数
3:唤醒后程序进入闹钟中断函数,然后再进入原来停机的位置继续运行。没有复位,单片机寄存器里的各种变量值仍然保留!!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在嵌入式开发中,STM32的时钟系统因其灵活性和复杂性成为开发者关注的焦点。然而,看似简单的时钟配置背后,隐藏着诸多易被忽视的陷阱,轻则导致系统不稳定,重则引发硬件损坏。本文从时钟源选择、PLL配置、总线时钟分配等关键环...

关键字: STM32 时钟系统

在嵌入式系统开发中,STM32系列微控制器的内部温度传感器因其低成本、高集成度特性,广泛应用于设备自检、环境监测等场景。然而,受芯片工艺差异和电源噪声影响,其原始数据存在±1.5℃的固有误差。本文从硬件配置、校准算法、软...

关键字: STM32 温度传感器

在能源效率与智能化需求双重驱动下,AC-DC转换器的数字控制技术正经历从传统模拟方案向全数字架构的深刻变革。基于STM32微控制器的PFM(脉冲频率调制)+PWM(脉冲宽度调制)混合调制策略,结合动态电压调整(Dynam...

关键字: AC-DC STM32

当前智能家居产品需求不断增长 ,在这一背景下 ,对现有浇花装置缺陷进行了改进 ,设计出基于STM32单片机的全 自动家用浇花机器人。该设计主要由机械结构和控制系统构成 ,机械结构通过麦克纳姆轮底盘与喷洒装置的结合实现机器...

关键字: STM32 麦克纳姆轮 安全可靠 通过性强

用c++编程似乎是让你的Arduino项目起步的障碍吗?您想要一种更直观的微控制器编程方式吗?那你需要了解一下Visuino!这个图形化编程平台将复杂电子项目的创建变成了拖动和连接块的简单任务。在本文中,我们将带您完成使...

关键字: Visuino Arduino ESP32 STM32

基于STM32与LoRa技术的无线传感网络凭借其低功耗、广覆盖、抗干扰等特性,成为环境监测、工业自动化等场景的核心解决方案。然而,如何在复杂电磁环境中实现高效休眠调度与动态信道优化,成为提升网络能效与可靠性的关键挑战。本...

关键字: STM32 LoRa

在实时控制系统、高速通信协议处理及高精度数据采集等对时间敏感的应用场景中,中断响应延迟的优化直接决定了系统的可靠性与性能上限。STM32系列微控制器凭借其灵活的嵌套向量中断控制器(NVIC)、多通道直接内存访问(DMA)...

关键字: STM32 DMA

数字电源技术向高功率密度、高效率与高动态响应方向加速演进,STM32微控制器凭借其基于DSP库的算法加速能力与对LLC谐振变换器的精准控制架构,成为优化电源动态性能的核心平台。相较于传统模拟控制或通用型数字控制器,STM...

关键字: STM32 数字电源

STM32微控制器凭借其针对电机控制场景的深度优化,成为高精度、高可靠性驱动系统的核心选择。相较于通用型MCU,STM32在电机控制领域的核心优势集中体现在FOC(磁场定向控制)算法的硬件加速引擎与PWM死区时间的动态补...

关键字: STM32 电机控制

无线充电技术加速渗透消费电子与汽车电子领域,基于Qi协议的无线充电发射端开发成为智能设备能量补给的核心课题。传统模拟控制方案存在响应滞后、参数调整困难等问题,而基于STM32的数字PID控制结合FOD(Foreign O...

关键字: STM32 无线充电
关闭