当前位置:首页 > 单片机 > 单片机
[导读]系统时钟和分频首先来手册里的一段话。三种不同的时钟源可被用来驱动系统时钟(SYSCLK)HSI振荡器时钟HSE振荡器时钟PLL时钟一般用的是PLL时钟,后面有证据。我们可以通过库函数获取各时钟值void RCC_GetClocksFreq(RCC

系统时钟和分频

首先来手册里的一段话。

三种不同的时钟源可被用来驱动系统时钟(SYSCLK)

HSI振荡器时钟

HSE振荡器时钟

PLL时钟

一般用的是PLL时钟,后面有证据。

我们可以通过库函数获取各时钟值

void RCC_GetClocksFreq(RCC_ClocksTypeDef* RCC_Clocks)

在我的系统里,把时钟值打印信息如下:

SYSCLK:0x44aa200 //72000000,72MHz
HCLK:0x44aa200 //72000000,72MHz

PCLK1:0x2255100 //36000000,36MHz
PCLK2:0x44aa200 //72000000,72MHz
ADCCLK:0x2255100 //36000000,36MHz
RCC->CFGR:0x001D040A //PLL输出作为系统时钟

可推测几个预分频值为

AHB prescaler = 1

APB1 prescaler = 2

APB2 prescaler = 1

ADC prescaler = 2

根据读取RCC->CFGR寄存器值为:0x001D040A,上面推测完全正确。

CFGR寄存器的SWS段也说明:PLL输出作为系统时钟。

TIM2使用PCLK1,但注意时钟树里有这一段

见附图

已知APB1 prescaler=2,故TIM2CLK = PCLK1*2 = 72MHz.

所以被TIM2分频的时钟大小是72MHz。

我的程序也证明了这点

TIM_TimeBaseInitTypeDef tim2_InitStruct;

TIM_DeInit(TIM2);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);//Enable Timer2 clock.
NVIC_ConfigurationForTimer2();

// PCLK1=36MHz, PSC=36000-1, CK_CNT=36MHz/(PSC+1)=1000
// ARR=2000, 1s/1000 * 2000 = 2s.
tim2_InitStruct.TIM_Prescaler = 36000-1;
tim2_InitStruct.TIM_Period = 2000-1;
tim2_InitStruct.TIM_CounterMode = TIM_CounterMode_Up;
tim2_InitStruct.TIM_ClockDivision = TIM_CKD_DIV1;
tim2_InitStruct.TIM_RepetitionCounter = 0;

TIM_TimeBaseInit(TIM2, &tim2_InitStruct);

TIM_ClearFlag(TIM2, TIM_FLAG_Update);
TIM_ITConfig(TIM2, TIM_IT_Update, ENABLE);//Enables the specified TIM interrupts.

这段配置原本以为定时时间是2s,实际只有1s。看了手册才理解原因。

摘自:http://blog.csdn.net/marike1314/article/details/5673522


STM32 RCC复位与时钟配置,我首先忽略掉复位,首先学习时钟配置,复位以后用到再学习

STM32有多个时钟源,分别是

HSI:上电默认启动,因精度不高所以先不采用,以后如果需要再使用

HSE:外部高速时钟,系统时钟一般采用它,经过PLL倍频作为系统同时钟

LSE:外部低速时钟,一般专门用于RTC,等到RTC模块时再使用

LSI:内部低速时钟,精度不高,一般用于IWDGCLK

时钟系统框图如下:

STM32中各个模块都有自己的时钟,当使用相应的模块时首先记得把此模块时钟开启

本次学习使用标准固件库3.3.0

好了,看明白上图咱就开始吧:

void RCC_Configuration(void)
{
ErrorStatus HSEStartUpStatus;
//SystemInit();//完全可以使用此函数配置,但是为了学习咱先不用
RCC_DeInit();//复位RCC模块的寄存器,复位成缺省值
RCC_HSEConfig(RCC_HSE_ON); //开启HSE时钟,咱是用HSE的时钟作为PLL的时钟源
HSEStartUpStatus = RCC_WaitForHSEStartUp();//获取HSE启动状态

if(HSEStartUpStatus == SUCCESS)//如果HSE启动成功
{
FLASH_PrefetchBufferCmd(ENABLE);//开启FLASH的预取功能
FLASH_SetLatency(FLASH_Latency_2); //FLASH延迟2个周期(这里我也不明白,先用吧)

RCC_HCLKConfig(RCC_SYSCLK_Div1); //配置HCLK,PCLK2,PCLK1,PLL
RCC_PCLK2Config(RCC_HCLK_Div1);
RCC_PCLK1Config(RCC_HCLK_Div2);

RCC_PLLConfig(RCC_PLLSource_HSE_Div1,RCC_PLLMul_9);
RCC_PLLCmd(ENABLE);//启动PLL
while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY)==RESET)

{}//等待PLL启动完成
RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK); //配置系统时钟
while(RCC_GetSYSCLKSource() !=0x80) //检查是否将HSE 9倍频后作为系统时钟

{}
}

}

设置时钟流程:

1.将RCC寄存器重新设置为默认值 RCC_DeInit

2.打开外部高速时钟晶振HSE RCC_HSEConfig(RCC_HSE_ON);

3.等待外部高速时钟晶振工作 HSEStartUpStatus = RCC_WaitForHSEStartUp();

4.设置AHB时钟 RCC_HCLKConfig;

5.设置高速APB2时钟RCC_PCLK2Config;

6.设置低速速APB1时钟RCC_PCLK1Config

7.设置PLL RCC_PLLConfig

8.打开PLL RCC_PLLCmd(ENABLE);

9.等待PLL工作 while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET)

10.设置系统时钟 RCC_SYSCLKConfig

11.判断是否PLL是系统时钟 while(RCC_GetSYSCLKSource() != 0x08)

12.打开要使用的外设时钟 RCC_APB2PeriphClockCmd()/RCC_APB1PeriphClockCmd()

至此我们就将STM32的系统时钟配置好了,系统时钟72MHz,APH 72MHz,APB2 72MHz,APB1 32MHz,USB 48MHz

其他至于ADC什么的先用不管,用到时再设置,本次只是大体先熟悉下STM32的时钟配置流程,便于以后程序的编写


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在嵌入式开发中,STM32的时钟系统因其灵活性和复杂性成为开发者关注的焦点。然而,看似简单的时钟配置背后,隐藏着诸多易被忽视的陷阱,轻则导致系统不稳定,重则引发硬件损坏。本文从时钟源选择、PLL配置、总线时钟分配等关键环...

关键字: STM32 时钟系统

在嵌入式系统开发中,STM32系列微控制器的内部温度传感器因其低成本、高集成度特性,广泛应用于设备自检、环境监测等场景。然而,受芯片工艺差异和电源噪声影响,其原始数据存在±1.5℃的固有误差。本文从硬件配置、校准算法、软...

关键字: STM32 温度传感器

在能源效率与智能化需求双重驱动下,AC-DC转换器的数字控制技术正经历从传统模拟方案向全数字架构的深刻变革。基于STM32微控制器的PFM(脉冲频率调制)+PWM(脉冲宽度调制)混合调制策略,结合动态电压调整(Dynam...

关键字: AC-DC STM32

当前智能家居产品需求不断增长 ,在这一背景下 ,对现有浇花装置缺陷进行了改进 ,设计出基于STM32单片机的全 自动家用浇花机器人。该设计主要由机械结构和控制系统构成 ,机械结构通过麦克纳姆轮底盘与喷洒装置的结合实现机器...

关键字: STM32 麦克纳姆轮 安全可靠 通过性强

用c++编程似乎是让你的Arduino项目起步的障碍吗?您想要一种更直观的微控制器编程方式吗?那你需要了解一下Visuino!这个图形化编程平台将复杂电子项目的创建变成了拖动和连接块的简单任务。在本文中,我们将带您完成使...

关键字: Visuino Arduino ESP32 STM32

基于STM32与LoRa技术的无线传感网络凭借其低功耗、广覆盖、抗干扰等特性,成为环境监测、工业自动化等场景的核心解决方案。然而,如何在复杂电磁环境中实现高效休眠调度与动态信道优化,成为提升网络能效与可靠性的关键挑战。本...

关键字: STM32 LoRa

在实时控制系统、高速通信协议处理及高精度数据采集等对时间敏感的应用场景中,中断响应延迟的优化直接决定了系统的可靠性与性能上限。STM32系列微控制器凭借其灵活的嵌套向量中断控制器(NVIC)、多通道直接内存访问(DMA)...

关键字: STM32 DMA

数字电源技术向高功率密度、高效率与高动态响应方向加速演进,STM32微控制器凭借其基于DSP库的算法加速能力与对LLC谐振变换器的精准控制架构,成为优化电源动态性能的核心平台。相较于传统模拟控制或通用型数字控制器,STM...

关键字: STM32 数字电源

STM32微控制器凭借其针对电机控制场景的深度优化,成为高精度、高可靠性驱动系统的核心选择。相较于通用型MCU,STM32在电机控制领域的核心优势集中体现在FOC(磁场定向控制)算法的硬件加速引擎与PWM死区时间的动态补...

关键字: STM32 电机控制

无线充电技术加速渗透消费电子与汽车电子领域,基于Qi协议的无线充电发射端开发成为智能设备能量补给的核心课题。传统模拟控制方案存在响应滞后、参数调整困难等问题,而基于STM32的数字PID控制结合FOD(Foreign O...

关键字: STM32 无线充电
关闭