当前位置:首页 > 单片机 > 单片机
[导读]SECTION 1调试STM32串口过程中发现一个奇怪的问题,初始化串口1口,使能串口发送完成中断后,立刻就进入了发送完成中断。仔细的查阅了STM32手册中的串口部分的介绍: 以下是字符发送的配置过程,注意第6点,在设置

SECTION 1

调试STM32串口过程中发现一个奇怪的问题,初始化串口1口,使能串口发送完成中断后,立刻就进入了发送完成中断。
仔细的查阅了STM32手册中的串口部分的介绍:

以下是字符发送的配置过程,注意第6点,在设置USART_CR1中的TE位时,会发送一个空闲帧作为第一次数据发送,所以即便你执行了USART_ClearFlag(USART1, USART_FLAG_TC); (这个函数肯定在空闲帧数据发送完成前执行),所以当空闲帧发送完后,就进入发送完成中断。

配置步骤:
1. 通过在USART_CR1寄存器上置位UE位来激活USART
2. 编程USART_CR1的M位来定义字长。
3. 在USART_CR2中编程停止位的位数。
4. 如果采用多缓冲器通信,配置USART_CR3中的DMA使能位(DMAT)。按多缓冲器通信中
的描述配置DMA寄存器。
5. 利用USART_BRR寄存器选择要求的波特率。
6. 设置USART_CR1中的TE位,发送一个空闲帧作为第一次数据发送。
7. 把要发送的数据写进USART_DR寄存器(此动作清除TXE位)。在只有一个缓冲器的情况
下,对每个待发送的数据重复步骤7。
8. 在USART_DR寄存器中写入最后一个数据字后,要等待TC=1,它表示最后一个数据帧的
传输结束。当需要关闭USART或需要进入停机模式之前,需要确认传输结束,避免破坏
最后一次传输。

//解决的办法:
//方法一
//在执行
USART_ITConfig(USART1, USART_IT_TC, ENABLE);
//之前,先延时一段时间,基本上比一个字符发送的时间长一点就可以了,然后再执行
USART_ClearFlag(USART1, USART_FLAG_TC);

//方法二:
//在执行
USART_ITConfig(USART1, USART_IT_TC, ENABLE);
while(USART_GetFlagStatus(USART1,USART_FLAG_TC)==RESET)
{
; //等待空闲帧发送完成后 再清零发送标志
}
USART_ClearFlag(USART1,USART_FLAG_TC);
SECTION 2


先说TC。即Transmission Complete。发送一个字节后才进入中断,这里称为“发送后中断”。和原来8051的TI方式一样,都是发送后才进中断,需要在发送函数中先发送一个字节触发中断。发送函数如下


/*******
功能:中断方式发送字符串.采用判断TC的方式.即 判断 发送后中断 位.
输入:字符串的首地址
输出:无
*******/
void USART_SendDataString( u8 *pData )
{
pDataByte = pData;

USART_ClearFlag(USART1, USART_FLAG_TC);//清除传输完成标志位,否则可能会丢失第1个字节的数据.网友提供.

USART_SendData(USART1, *(pDataByte++) ); //必须要++,不然会把第一个字符t发送两次
}




中断处理函数如下
/********
* Function Name : USART1_IRQHandler
* Description : This function handles USART1 global interrupt request.
* Input : None
* Output : None
* Return : None
*********/
void USART1_IRQHandler(void)
{
if( USART_GetITStatus(USART1, USART_IT_TC) == SET )
{
if( *pDataByte == '' )//TC需要 读SR+写DR 方可清0,当发送到最后,到''的时候用个if判断关掉
USART_ClearFlag(USART1, USART_FLAG_TC);//不然TC一直是set, TCIE也是打开的,导致会不停进入中断. clear掉即可,不用关掉TCIE
else
USART_SendData(USART1, *pDataByte++ );
}


}


其中u8 *pDataByte;是一个外部指针变量


在中断处理程序中,发送完该字符串后,不用关闭TC的中断使能TCIE,只需要清掉标志位TC;这样就能避免TC == SET 导致反复进入中断了。


串口初始化函数如下


/*********
名称: USART_Config
功能: 设置串口参数
输入: 无
输出: 无
返回: 无
**********/
void USART_Config()
{
USART_InitTypeDef USART_InitStructure;//定义一个包含串口参数的结构体

USART_InitStructure.USART_BaudRate = 9600; //波特率9600
USART_InitStructure.USART_WordLength = USART_WordLength_8b;//8位数据位
USART_InitStructure.USART_StopBits = USART_StopBits_1;//1位停止位
USART_InitStructure.USART_Parity = USART_Parity_No;//无校验
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;//无硬件流控制
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;//输入加输出模式
USART_InitStructure.USART_Clock = USART_Clock_Disable;//时钟关闭
USART_InitStructure.USART_CPOL = USART_CPOL_Low;
USART_InitStructure.USART_CPHA = USART_CPHA_2Edge;
USART_InitStructure.USART_LastBit = USART_LastBit_Disable;
USART_Init(USART1, &USART_InitStructure);//设置到USART1

USART_ITConfig(USART1, USART_IT_TC, ENABLE);//Tramsimssion Complete后,才产生中断. 开TC中断必须放在这里,否则还是会丢失第一字节


USART_Cmd(USART1, ENABLE); //使能USART1
}
这里请问一个问题:开TC中断USART_ITConfig()如果放在我的USART_SendDataString()中再开,会丢失字符串的第一字节。必须放在串口初始化函数中才不会丢。不知道为什么??


这里笔者可以给出解释,你看下SECTION1 就可以知道为什么呢,你这样做的原理和SECTION1讲解的差不多,就相当于延时,而你后面没有丢失数据的主要原因就是你代码中有这么一句 USART_ClearFlag(USART1, USART_FLAG_TC);//清除传输完成标志位,否则可能会丢失第1个字节的数据.网友提供.




再说判断TXE。即Tx DR Empty,发送寄存器空。当使能TXEIE后,只要Tx DR空了,就会产生中断。所以,发送完字符串后必须关掉,否则会导致重复进入中断。这也是和TC不同之处。


发送函数如下:
/*******
功能:中断方式发送字符串.采用判断TC的方式.即 判断 发送后中断 位.
输入:字符串的首地址
输出:无
*******/
void USART_SendDataString( u8 *pData )
{
pDataByte = pData;
USART_ITConfig(USART1, USART_IT_TXE, ENABLE);//只要发送寄存器为空,就会一直有中断,因此,要是不发送数据时,把发送中断关闭,只在开始发送时,才打开。

}


中断处理函数如下:


/********
* Function Name : USART1_IRQHandler
* Description : This function handles USART1 global interrupt request.
* Input : None
* Output : None
* Return : None
********/
void USART1_IRQHandler(void)
{
if( USART_GetITStatus(USART1, USART_IT_TXE) == SET )
{
if( *pDataByte == '' )//待发送的字节发到末尾NULL了
USART_ITConfig(USART1, USART_IT_TXE, DISABLE);//因为是 发送寄存器空 的中断,所以发完字符串后必须关掉,否则只要空了,就会进中断
else
USART_SendData(USART1, *pDataByte++ );
}


}


在串口初始化函数中就不用打开TXE的中断了(是在发送函数中打开的)如下:
/************
名称: USART_Config
功能: 设置串口参数
输入: 无
输出: 无
返回: 无
************/
void USART_Config()
{
USART_InitTypeDef USART_InitStructure;//定义一个包含串口参数的结构体

USART_InitStructure.USART_BaudRate = 9600; //波特率9600
USART_InitStructure.USART_WordLength = USART_WordLength_8b;//8位数据位
USART_InitStructure.USART_StopBits = USART_StopBits_1;//1位停止位
USART_InitStructure.USART_Parity = USART_Parity_No;//无校验
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;//无硬件流控制
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;//输入加输出模式
USART_InitStructure.USART_Clock = USART_Clock_Disable;//时钟关闭
USART_InitStructure.USART_CPOL = USART_CPOL_Low;
USART_InitStructure.USART_CPHA = USART_CPHA_2Edge;
USART_InitStructure.USART_LastBit = USART_LastBit_Disable;


USART_Init(USART1, &USART_InitStructure);//设置到USART1

USART_Cmd(USART1, ENABLE); //使能USART1
}


SECTION 3


在USART的发送端有2个寄存器,一个是程序可以看到的USART_DR寄存器(下图中阴影部分的TDR),另一个是程序看不到的移位寄存器(下图中阴影部分Transmit Shift Register)。


对应USART数据发送有两个标志,一个是TXE=发送数据寄存器空,另一个是TC=发送结束;对照下图,当TDR中的数据传送到移位寄存器后,TXE被设置,此时移位寄存器开始向TX信号线按位传输数据,但因为TDR已经变空,程序可以把下一个要发送的字节(操作USART_DR)写入TDR中,而不必等到移位寄存器中所有位发送结束,所有位发送结束时(送出停止位后)硬件会设置TC标志。


另一方面,在刚刚初始化好USART还没有发送任何数据时,也会有TXE标志,因为这时发送数据寄存器是空的。


TXEIE和TCIE的意义很简单,TXEIE允许在TXE标志为'1'时产生中断,而TCIE允许在TC标志为'1'时产生中断。


至于什么时候使用哪个标志,需要根据你的需要自己决定。但我认为TXE允许程序有更充裕的时间填写TDR寄存器,保证发送的数据流不间断。TC可以让程序知道发送结束的确切时间,有利于程序控制外部数据流的时序。


SECTION 4
总的来说,STM32单片机的串口还是很好理解的,编程也不算复杂。当然我更愿意希望其中断系统和51单片机一样的简单。
对于接收终端,就是RXNE了,这只在接收完成后才产生,在执行USART_ITConfig(USART1, USART_IT_RXNE, ENABLE)代码时不会进入ISR。但麻烦的就是发送有关的中断了:TXE或者TC,根据资料和测试的结果,TXE在复位后就是置1的,即在执行USART_ITConfig(USART1, USART_IT_TXE, ENABLE)后会立即产生中断请求。因此这造成一个麻烦的问题:如果没有真正的发送数据,TXE中断都会发生,而且没有休止,这将占用很大部分的CPU时间,甚至影响其他程序的运行!
因此建议的是在初始化时不好启用TXE中断,只在要发送数据(尤其是字符串、数组这样的系列数据)时才启用TXE。在发送完成后立即将其关闭,以免引起不必要的麻烦。
对于发送,需要注意TXE和TC的差别——这里简单描述一下,假设串口数据寄存器是DR、串口移位寄存器是SR以及TXD引脚TXDpin,其关系是DR->SR->TXDpin。当DR中的数据转移到SR中时TXE置1,如果有数据写入DR时就能将TXE置0;如果SR中的数据全部通过TXDpin移出并且没有数据进入DR,则TC置1。并且需要注意TXE只能通过写DR来置0,不能直接将其清零,而TC可以直接将其写1清零。
对于发送单个字符可以考虑不用中断,直接以查询方式完成。
对于发送字符串/数组类的数据,唯一要考虑的是只在最后一个字符发送后关闭发送中断,这里可以分为两种情况:对于发送可显示的字符串,其用0x00作为结尾的,因此在ISR中就用0x00作为关闭发送中断(TXE或者TC)的条件;第二种情况就是发送二进制数据,那就是0x00~0xFF中间的任意数据,就不能用0x00来判断结束了,这时必须知道数据的具体长度。
这里简单分析上面代码的执行过程:TXE中断产生于前一个字符从DR送入SR,执行效果是后一个字符送入DR。对于第一种情况,如果是可显示字符,就执行USART_SendData来写DR(也就清零了TXE),当最后一个可显示的字符从DR送入SR之后,产生的TXE中断发现要送入DR的是字符是0x00——这当然不行——此时就关闭TXE中断,字符串发送过程就算结束了。当然这时不能忽略一个隐含的结果:那就是最后一个可显示字符从DR转入SR后TXE是置1的,但关闭了TXE中断,因此只要下次再开启TXE中断就会立即进入ISR。对于第二种情况,其结果和第一种的相同。
对于第一种情况,其程序可以这么写:其中TXS是保存了要发送数据的字符串,TxCounter1是索引值:
extern __IO uint8_t TxCounter1;
extern uint8_t *TXS;
extern __IO uint8_t TxLen;
void USART1_IRQHandler(void)
{
if(USART_GetITStatus(USART1, USART_IT_TXE) != RESET)
{
if(TXS[TxCounter1]) //如果是可显示字符
{ USART_SendData(USART1,TXS[TxCounter1++]);}
else //发送完成后关闭TXE中断,
{ USART_ITConfig(USART1,USART_IT_TXE,DISABLE);}
}
}
对于第二种情况,和上面的大同小异,其中TXLen表示要发送的二进制数据长度:
void USART1_IRQHandler(void)
{
if(USART_GetITStatus(USART1, USART_IT_TXE) != RESET) //对USART_DR的写操作,将该位清零。
{
if(TxCounter1 { USART_SendData(USART1,TXS[TxCounter1++]);}
else //发送完成后关闭TXE中断
{ USART_ITConfig(USART1,USART_IT_TXE,DISABLE);}
}
}
事实上第一种情况是第二种的特殊形式,就是说可以用第二种情况去发送可显示的字符——当然没人有闲心去数一句话里有多少个字母空格和标点符号!
在使用时,只要将TXS指向要发送的字符串或者数组,设置TxLen为要发送的数据长度,然后执行USART_ITConfig(USART1, USART_IT_TXE,ENABLE)就立即开始发送过程。用户可以检查TxCounter1来确定发送了多少字节。比如以第二种情况为例:
uint32_t *TXS;
uint8_t TxBuffer1[]="0123456789ABCDEF";
uint8_t DST2[]="ASDFGHJKL";
__IO uint8_t TxLen = 0x00;
TxLen=8; //发送8个字符,最终发送的是01234567
TXS=(uint32_t *)TxBuffer1; //将TXS指向字符串TxBuffer1
TxCounter1=0; //复位索引值
USART_ITConfig(USART1, USART_IT_TXE,ENABLE); //启用TXE中断,即开始发送过程
while(TxCounter1!=TxLen); //等待发送完成


TXS=(uint32_t *)TxBuffer2; //同上,最终发送的是ASDFGHJK
TxCounter1=0;
USART_ITConfig(USART1, USART_IT_TXE,ENABLE);
while(TxCounter1!=TxLen);
以上就是我认为的最佳方案,但串口中断方式数据有多长就中断多少次,我认为还是占用不少CPU时间,相比之下DMA方式就好多了,因为DMA发送字符串时最多中断两次(半传输完成,全传输完成),并且将串口变成类似16C550的器件。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在嵌入式开发中,STM32的时钟系统因其灵活性和复杂性成为开发者关注的焦点。然而,看似简单的时钟配置背后,隐藏着诸多易被忽视的陷阱,轻则导致系统不稳定,重则引发硬件损坏。本文从时钟源选择、PLL配置、总线时钟分配等关键环...

关键字: STM32 时钟系统

在嵌入式系统开发中,STM32系列微控制器的内部温度传感器因其低成本、高集成度特性,广泛应用于设备自检、环境监测等场景。然而,受芯片工艺差异和电源噪声影响,其原始数据存在±1.5℃的固有误差。本文从硬件配置、校准算法、软...

关键字: STM32 温度传感器

在能源效率与智能化需求双重驱动下,AC-DC转换器的数字控制技术正经历从传统模拟方案向全数字架构的深刻变革。基于STM32微控制器的PFM(脉冲频率调制)+PWM(脉冲宽度调制)混合调制策略,结合动态电压调整(Dynam...

关键字: AC-DC STM32

当前智能家居产品需求不断增长 ,在这一背景下 ,对现有浇花装置缺陷进行了改进 ,设计出基于STM32单片机的全 自动家用浇花机器人。该设计主要由机械结构和控制系统构成 ,机械结构通过麦克纳姆轮底盘与喷洒装置的结合实现机器...

关键字: STM32 麦克纳姆轮 安全可靠 通过性强

用c++编程似乎是让你的Arduino项目起步的障碍吗?您想要一种更直观的微控制器编程方式吗?那你需要了解一下Visuino!这个图形化编程平台将复杂电子项目的创建变成了拖动和连接块的简单任务。在本文中,我们将带您完成使...

关键字: Visuino Arduino ESP32 STM32

基于STM32与LoRa技术的无线传感网络凭借其低功耗、广覆盖、抗干扰等特性,成为环境监测、工业自动化等场景的核心解决方案。然而,如何在复杂电磁环境中实现高效休眠调度与动态信道优化,成为提升网络能效与可靠性的关键挑战。本...

关键字: STM32 LoRa

在实时控制系统、高速通信协议处理及高精度数据采集等对时间敏感的应用场景中,中断响应延迟的优化直接决定了系统的可靠性与性能上限。STM32系列微控制器凭借其灵活的嵌套向量中断控制器(NVIC)、多通道直接内存访问(DMA)...

关键字: STM32 DMA

数字电源技术向高功率密度、高效率与高动态响应方向加速演进,STM32微控制器凭借其基于DSP库的算法加速能力与对LLC谐振变换器的精准控制架构,成为优化电源动态性能的核心平台。相较于传统模拟控制或通用型数字控制器,STM...

关键字: STM32 数字电源

STM32微控制器凭借其针对电机控制场景的深度优化,成为高精度、高可靠性驱动系统的核心选择。相较于通用型MCU,STM32在电机控制领域的核心优势集中体现在FOC(磁场定向控制)算法的硬件加速引擎与PWM死区时间的动态补...

关键字: STM32 电机控制

无线充电技术加速渗透消费电子与汽车电子领域,基于Qi协议的无线充电发射端开发成为智能设备能量补给的核心课题。传统模拟控制方案存在响应滞后、参数调整困难等问题,而基于STM32的数字PID控制结合FOD(Foreign O...

关键字: STM32 无线充电
关闭