当前位置:首页 > 单片机 > 单片机
[导读]开发过程经常需要查看某些特定参数。通常的方法可以使用paintf进行打印输出,观察具体的变量值。STM32内部集成有USART的串口功能,可以通过串口直接输出到电脑(上位机)。使用非常方便,基本不需要不需要写代码,只

开发过程经常需要查看某些特定参数。通常的方法可以使用paintf进行打印输出,观察具体的变量值。STM32内部集成有USART的串口功能,可以通过串口直接输出到电脑(上位机)。使用非常方便,基本不需要不需要写代码,只要配置一下就可以使用。

简单设置就可以看到上面的效果

配置方法:

1、重定向printf的输出函数 int fputc(int ch, FILE *f)

2、配置STM32F10x的USART串口

重定向方法 stdio.h 的输出内容

intfputc(intch,FILE*f){//等待USART1数据发送完成(发送区域空)while(!(USART1->SR&USART_SR_TXE));//填充发送寄存器,数据+校验位最多9位USART1->DR=(ch&0x1FF);return(ch);}


启动STM32的 USART1 串口

1、使能 复用功能

2、使能 A引脚(USART1 在 PA9,PA10)

3、使能 USART1

4、设置 PA9(TX)复用推挽输出

5、设置 PA10(RX)输入浮空

6、 设置串口参数:波特率、数据位、校验、停止位、流控制

7、使能串口、使能输入、使能输出

OK


voidserial_init(void){////设置串口调试////输出:USART1//引脚:PA9(TX),PA10(RX)//波特率:9600//数据位:8bit(default)(CR1)//校验:none(default)(CR1)//停止位:1bit(default)(CR2)//流控制:none(default)(CR3)////清除设置后上面配置为系统默认状态inti;///使能复用功能,使能GPIOA,使能USART1RCC->APB2ENR|=RCC_APB2ENR_AFIOEN|RCC_APB2ENR_IOPAEN|RCC_APB2ENR_USART1EN;//关闭映射,确保USART使用PA9,PA10AFIO->MAPR&=~AFIO_MAPR_USART1_REMAP;//清除PA9,PA10状态GPIOA->CRH&=~(GPIO_CRH_CNF9|GPIO_CRH_MODE9|GPIO_CRH_CNF10|GPIO_CRH_MODE10);//设置PA9发送为复用推挽输出2MHzGPIOA->CRH|=GPIO_CR_AFOUT_PP2MHz&(GPIO_CRH_CNF9|GPIO_CRH_MODE9);//设置PA10接收为复用上拉下拉模式GPIOA->CRH|=GPIO_CR_AFIN_PULLDOWN&(GPIO_CRH_CNF10|GPIO_CRH_MODE10);//设置波特率为9600//计算方法//系统时钟/(16分频*波特率)//Baud=72,000,000/(16*9600)=468.75//整数部分<<4+取整(小数部分*16)//468CR1=USART_CR1_REST;USART1->CR2=USART_CR2_REST;//停止位1USART1->CR3=USART_CR3_REST;//没用控制流//防止产生不必要的信息for(i=0;iCR1=USART_CR1_UE|USART_CR1_TE|USART_CR1_RE;}


整个过程中关键的输出定向主要用到了2个寄存器:

一个状态寄存器,检查发送是否为空(USART_ST_TXE)

一个数据寄存器,用于发送数据


intmain(void){uint8_tud='a';Delay_init();//初始化串口调试serial_init();//使用寄存器直接输出a~zwhile(udSR&USART_SR_TXE));USART1->DR=ud;ud++;}//使用打印重定向输出字符串printf("ntest!n");printf("USART1使能,使能输出,使能输入n");ud='a';while(1){Delay(20);//太快降低速度方便看结果(200ms延迟)//使用寄存器直接输出while(!(USART1->SR&USART_SR_TXE));USART1->DR=ud;ud++;//使用打印输出换行if(ud>'z'){ud='a';printf("n");}};}


具体的配置寄存器可以查看《参考手册》

完整代码

常量定义

#define GPIO_CR_RESET (uint32_t)0x44444444

#define GPIO_CR_MODE_INPUT (uint32_t)0x00000000

#define GPIO_CR_MODE_2MHz (uint32_t)0x22222222

#define GPIO_CR_MODE_10MHz (uint32_t)0x11111111

#define GPIO_CR_MODE_50MHz (uint32_t)0x33333333


#define GPIO_CR_GP_PUSHPULL (uint32_t)0x00000000

#define GPIO_CR_GP_OPENDRAIN (uint32_t)0x44444444

#define GPIO_CR_OUT_PP2MHz (GPIO_CR_MODE_2MHz " GPIO_CR_GP_PUSHPULL)

#define GPIO_CR_OUT_PP50MHz (GPIO_CR_MODE_50MHz | GPIO_CR_GP_PUSHPULL)


#define GPIO_CR_AFO_PUSHPULL (uint32_t)0x88888888

#define GPIO_CR_AFO_OPENDRAIN (uint32_t)0xcccccccc


#define GPIO_CR_AFOUT_PP2MHz (GPIO_CR_MODE_2MHz | GPIO_CR_AFO_PUSHPULL) // 复用推挽输出,2MHz

#define GPIO_CR_AFIN_FLOAT (uint32_t)0x44444444 // 复用开漏输入

#define GPIO_CR_AFIN_PULLDOWN (uint32_t)0x88888888 // 复用上拉下拉输入



#define USART_CR1_REST (uint32_t)0x00000000

#define USART_CR2_REST (uint32_t)0x00000000

#define USART_CR3_REST (uint32_t)0x00000000

整理后的串口配置代码 Serial.c

/**

********************************************************************

*

* @file serial.c

* @author fpack

* @version v1.0

* @date 2014-9-1

* @brief 小穆妹纸串口调试

*

********************************************************************

**/


#include

#include "armsis.h"


/*----------------------------------------------------------------------------

Define Baudrate setting (BRR) for USART

*----------------------------------------------------------------------------*/

#define __DIV(__PCLK, __BAUD) ((__PCLK*25)/(4*__BAUD))

#define __DIVMANT(__PCLK, __BAUD) (__DIV(__PCLK, __BAUD)/100)

#define __DIVFRAQ(__PCLK, __BAUD) (((__DIV(__PCLK, __BAUD) - (__DIVMANT(__PCLK, __BAUD) * 100)) * 16 + 50) / 100)

#define __USART_BRR(__PCLK, __BAUD) ((__DIVMANT(__PCLK, __BAUD) << 4)"(__DIVFRAQ(__PCLK, __BAUD) & 0x0F))



//struct __FILE { int handle; /* Add whatever you need here */ };

//FILE __stdout;

//FILE __stdin;


int fputc(int ch, FILE *f)

{

// 等待USART1 数据发送完成(发送区域空)

while (!(USART1->SR & USART_SR_TXE));

USART1->DR = (ch & 0x1FF);

return (ch);

}



void serial_init(void)

{

//

// 设置串口调试

//

// 输 出: USART1

// 引 脚: PA9(TX), PA10(RX)

// 波特率: 9600

// 数据位: 8 bit (default) (CR1)

// 校 验: none (default) (CR1)

// 停止位: 1 bit (default) (CR2)

// 流控制: none (default) (CR3)

//

// 清除设置后上面配置为系统默认状态

int i;

/// 使能复用功能,使能GPIOA,使

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在嵌入式开发中,STM32的时钟系统因其灵活性和复杂性成为开发者关注的焦点。然而,看似简单的时钟配置背后,隐藏着诸多易被忽视的陷阱,轻则导致系统不稳定,重则引发硬件损坏。本文从时钟源选择、PLL配置、总线时钟分配等关键环...

关键字: STM32 时钟系统

在嵌入式系统开发中,STM32系列微控制器的内部温度传感器因其低成本、高集成度特性,广泛应用于设备自检、环境监测等场景。然而,受芯片工艺差异和电源噪声影响,其原始数据存在±1.5℃的固有误差。本文从硬件配置、校准算法、软...

关键字: STM32 温度传感器

在能源效率与智能化需求双重驱动下,AC-DC转换器的数字控制技术正经历从传统模拟方案向全数字架构的深刻变革。基于STM32微控制器的PFM(脉冲频率调制)+PWM(脉冲宽度调制)混合调制策略,结合动态电压调整(Dynam...

关键字: AC-DC STM32

当前智能家居产品需求不断增长 ,在这一背景下 ,对现有浇花装置缺陷进行了改进 ,设计出基于STM32单片机的全 自动家用浇花机器人。该设计主要由机械结构和控制系统构成 ,机械结构通过麦克纳姆轮底盘与喷洒装置的结合实现机器...

关键字: STM32 麦克纳姆轮 安全可靠 通过性强

用c++编程似乎是让你的Arduino项目起步的障碍吗?您想要一种更直观的微控制器编程方式吗?那你需要了解一下Visuino!这个图形化编程平台将复杂电子项目的创建变成了拖动和连接块的简单任务。在本文中,我们将带您完成使...

关键字: Visuino Arduino ESP32 STM32

基于STM32与LoRa技术的无线传感网络凭借其低功耗、广覆盖、抗干扰等特性,成为环境监测、工业自动化等场景的核心解决方案。然而,如何在复杂电磁环境中实现高效休眠调度与动态信道优化,成为提升网络能效与可靠性的关键挑战。本...

关键字: STM32 LoRa

在实时控制系统、高速通信协议处理及高精度数据采集等对时间敏感的应用场景中,中断响应延迟的优化直接决定了系统的可靠性与性能上限。STM32系列微控制器凭借其灵活的嵌套向量中断控制器(NVIC)、多通道直接内存访问(DMA)...

关键字: STM32 DMA

数字电源技术向高功率密度、高效率与高动态响应方向加速演进,STM32微控制器凭借其基于DSP库的算法加速能力与对LLC谐振变换器的精准控制架构,成为优化电源动态性能的核心平台。相较于传统模拟控制或通用型数字控制器,STM...

关键字: STM32 数字电源

STM32微控制器凭借其针对电机控制场景的深度优化,成为高精度、高可靠性驱动系统的核心选择。相较于通用型MCU,STM32在电机控制领域的核心优势集中体现在FOC(磁场定向控制)算法的硬件加速引擎与PWM死区时间的动态补...

关键字: STM32 电机控制

无线充电技术加速渗透消费电子与汽车电子领域,基于Qi协议的无线充电发射端开发成为智能设备能量补给的核心课题。传统模拟控制方案存在响应滞后、参数调整困难等问题,而基于STM32的数字PID控制结合FOD(Foreign O...

关键字: STM32 无线充电
关闭