当前位置:首页 > 单片机 > 单片机
[导读]1 前言当bxCAN接收到报文,经过过滤器过滤后,会将报文存储到FIFO中,由http://blog.csdn.net/flydream0/article/details/8148791一文中可知,每个过滤器组都会关联一个FIFO,由此可见,当接收到的报文通过过滤器后会

1 前言

当bxCAN接收到报文,经过过滤器过滤后,会将报文存储到FIFO中,由http://blog.csdn.net/flydream0/article/details/8148791一文中可知,每个过滤器组都会关联一个FIFO,由此可见,当接收到的报文通过过滤器后会被存储到此过滤器组关联的FIFO中(STM32共两个接收FIFO)。这个FIFO为3级邮箱深度,且完全由硬件来管理,从而节省了CPU的处理负荷,简化了软件并保证了数据的一致性。应用程序只能通过读取FIFO输出邮箱,来读取FIFO中最先收到的报文。

2 什么是FIFO输出邮箱?

在回答这个问题之前,首先要知道一些内容,STM32的bxCAN模式共有两个接收FIFO,其次,每个接收FIFO有3级邮箱深度,意思就是说由三个邮箱组成,你暂且可以将这三个邮箱一起看成一个具体三个成员的消息队列,那么,你肯定会问,这个消息队列哪个是队首,哪个是队尾(假设消息从队首存入,从队尾取出)?在这里,这个FIFO输出邮箱就相当于这个队尾的意思,你可以将它看成是一个指向队尾的指针。那么三个邮箱哪个是队尾呢?显而易见,这就取决了当时接收到的消息了。

3 有效报文的定义

根据CAN协议,当报文被正确接收(直到EOF域的最后一位都没有错误),且通过了标识符过滤,那么该报文被认为是有效报文(参考:http://blog.csdn.net/flydream0/article/details/8148791)。

4 FIFO的状态

FIFO共有五个状态:空状态,挂号1状态,挂号2状态,挂号3状态,溢出状态。如下图所示:

图1

如上图,FIFO的状态是通过两个标志(FMP,FOVR)来体现的,FMP占两个位,用来标志当前报文所存储的邮箱,FOVR用以标志FIFO是否溢出。这两个标志处于FIFO寄存器(CAN_RFxR x=0..1)中。

4.1 FIFO的状态变化分析

由图1可知,在初始化状态时,FIFO是处于空状态的,当接收到一个报文时,这个报文存储到FIFO内部的邮箱中,此时,FIFO的状态变成挂号1状态,如果应用程序取走这个消息,则FIFO恢复空状态。

现在假设FIFO处于挂号1状态,即已接收到一个报文,且应用程序不没来得及取走接收到的报文,此时若再次接收到一个报文,那么FIFO将变成挂号2状态,以此类推,由于FIFO共有3个邮箱,只能缓存3个报文,因此,当接收到3个报文(假设期间应用程序从未取走任何报文)时,此时FIFO已满,若再来一个报文时,已无法再存储,此时FIFO将变成溢出状态。

4.2 FIFO溢出时的策略

STM32有两种策略来处理当FIFO溢出时的报文:

一:当FIFO溢出时,首先抛弃FIFO内最老的报文,然后再存入新接收到的报文,即滚动接收模式。

二:当FIFO溢出时,抛弃新接收到的报文,即FIFO锁定模式。

如何采用以上何种策略,取决于具体应用需求。如何设置?CAN主控制器寄存器(CAN_MCR)设置RFLM位为0,则为FIFO滚动接收模式,设为1,则为FIFO锁定模式。

5 与CAN接收相关的中断

STM32中与CAN接收相关的中断有三个:

接收中断:每当bxCAN接收到一个报文时产生一个中断。

FIFO满中断:当FIFO满时,即存储了3个报文时产生的中断。

FIFO溢出中断:当FIFO溢出时产生此中断。

需要注意的是,并不是以上所有中断就一定会产生,这取决于中断允许寄存器(CAN_IER)如何配置,关于中断相关内容,详情请关注后续中断介绍博文。

6 FIFO的构成

前面已经说过,STM32共有两个接收FIFO,每个FIFO由三个邮箱构成,那么每个邮箱又是如何的呢?

每个邮箱是由四个寄存器组成,这四个寄存器分别是:接收FIFO邮箱标识符寄存器(CAN_RIxR x=0..1),接收邮箱数据长度和时间戳寄存器(CAN_RDTxR x=0..1),接收FIFO邮箱低字节寄存器(CAN_RDLxR x=0..1),接收FIFO邮箱高字节寄存器(CAN_RDHxR x=0..1)。

6.1 标识符寄存器(CAN_RIxR)(x=0..1)

地址偏移量:0x1B0,0x1C0
复位值:未定义位
注: 所有接收邮箱寄存器都是只读的。

图2

由上图可知,一个CAN ID寄存器由11位标准id+18位扩展id+IDE(扩展标识)+RTR(远程帧标志)组成。


位31:21STID[10:0]: 标准标识符
扩展身份标识的高字节。位20:3EXID[17:0]: 扩展标识符
扩展身份标识的低字节。位2IDE: 标识符选择
该位决定接收邮箱中报文使用的标识符类型
0: 使用标准标识符;
1: 使用扩展标识符。位1RTR: 远程发送请求
0: 数据帧;
1: 远程帧。位0保留位。


6.2 数据长度和时间戳寄存器 (CAN_RDTxR) (x=0..1)

地址偏移量:0x1B4,0x1C4
复位值:未定义位
注: 所有接收邮箱寄存器都是只读的。

图3

各位的定义如下:


位31:16TIME[15:0]: 报文时间戳
该域包含了,在接收该报文SOF的时刻,16位定时器的值。位15:8FMI[15:0]: 过滤器匹配序号
这里是存在邮箱中的信息传送的过滤器序号。关于标识符过滤的细节,请参考21.4.4中有关过滤器匹配序号。位7:4保留位,硬件强制为0。位3:0DLC[15:0]: 接收数据长度
该域表明接收数据帧的数据长度(0~8)。对于远程帧,数据长度DLC恒为0。


这里需求注意的是FMI,还记得之前一篇介绍过滤器组的文章吗:http://blog.csdn.net/flydream0/article/details/8148791,当接收到一个报文时,这个报文通过某一个过滤器时,会将此过滤器对应的序号,即过滤器匹配序号保存到关联的接收FIFO中,具体来说,应该是保留到关联的FIFO中的邮箱的数据长度和时间戳寄存器的FMI位。这下明白了吧。

6.3 接收FIFO邮箱低字节数据寄存器 (CAN_RDLxR) (x=0..1)

地址偏移量:0x1B8,0x1C8
复位值:未定义位
注: 所有接收邮箱寄存器都是只读的。

接收到的报文的数据用两个寄存器存储,分别存储高四个字节和低四个字节。这里是指低四个字节。

图4


位31:24DATA3[7:0] : 字节3
报文的数据字节3。位23:16DATA2[7:0] : 字节2
报文的数据字节2。位15:8DATA1[7:0] : 字节1
报文的数据字节1。位7:0DATA0[7:0] : 字节0
报文的数据字节0。
报文包含0到8个字节数据,且从字节0开始。


6.4 接收FIFO邮箱高字节数据寄存器 (CAN_RDHxR) (x=0..1)

地址偏移量:0x1BC,0x1CC
复位值:未定义位
注: 所有接收邮箱寄存器都是只读的。

含义如6.3节,这时是指接收报文的数据的高四个字节。

图5


位31:24DATA7[7:0] : 字节7
报文的数据字节7
注: 如果CAN_MCR寄存器的TTCM位为1,且该邮箱的TGT位也为1,那么DATA7和DATA6将被TIME时间戳代替。位23:16DATA6[7:0] : 字节6
报文的数据字节6。位15:8DATA5[7:0] : 字节5
报文的数据字节5。位7:0DATA4[7:0] : 字节4
报文的数据字节4。


7 CAN的接收FIFO寄存器(CAN_RFxR x=0..1)介绍

前面已经介绍了接收FIFO中的邮箱的组成(每个邮箱由四个寄存器组成),接收FIFO有了三个邮箱所包含的寄存器还不够,接收FIFO还应该由一个专门的寄存器来管理,来指示接收

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在嵌入式开发中,STM32的时钟系统因其灵活性和复杂性成为开发者关注的焦点。然而,看似简单的时钟配置背后,隐藏着诸多易被忽视的陷阱,轻则导致系统不稳定,重则引发硬件损坏。本文从时钟源选择、PLL配置、总线时钟分配等关键环...

关键字: STM32 时钟系统

在嵌入式系统开发中,STM32系列微控制器的内部温度传感器因其低成本、高集成度特性,广泛应用于设备自检、环境监测等场景。然而,受芯片工艺差异和电源噪声影响,其原始数据存在±1.5℃的固有误差。本文从硬件配置、校准算法、软...

关键字: STM32 温度传感器

在能源效率与智能化需求双重驱动下,AC-DC转换器的数字控制技术正经历从传统模拟方案向全数字架构的深刻变革。基于STM32微控制器的PFM(脉冲频率调制)+PWM(脉冲宽度调制)混合调制策略,结合动态电压调整(Dynam...

关键字: AC-DC STM32

当前智能家居产品需求不断增长 ,在这一背景下 ,对现有浇花装置缺陷进行了改进 ,设计出基于STM32单片机的全 自动家用浇花机器人。该设计主要由机械结构和控制系统构成 ,机械结构通过麦克纳姆轮底盘与喷洒装置的结合实现机器...

关键字: STM32 麦克纳姆轮 安全可靠 通过性强

用c++编程似乎是让你的Arduino项目起步的障碍吗?您想要一种更直观的微控制器编程方式吗?那你需要了解一下Visuino!这个图形化编程平台将复杂电子项目的创建变成了拖动和连接块的简单任务。在本文中,我们将带您完成使...

关键字: Visuino Arduino ESP32 STM32

基于STM32与LoRa技术的无线传感网络凭借其低功耗、广覆盖、抗干扰等特性,成为环境监测、工业自动化等场景的核心解决方案。然而,如何在复杂电磁环境中实现高效休眠调度与动态信道优化,成为提升网络能效与可靠性的关键挑战。本...

关键字: STM32 LoRa

在实时控制系统、高速通信协议处理及高精度数据采集等对时间敏感的应用场景中,中断响应延迟的优化直接决定了系统的可靠性与性能上限。STM32系列微控制器凭借其灵活的嵌套向量中断控制器(NVIC)、多通道直接内存访问(DMA)...

关键字: STM32 DMA

数字电源技术向高功率密度、高效率与高动态响应方向加速演进,STM32微控制器凭借其基于DSP库的算法加速能力与对LLC谐振变换器的精准控制架构,成为优化电源动态性能的核心平台。相较于传统模拟控制或通用型数字控制器,STM...

关键字: STM32 数字电源

STM32微控制器凭借其针对电机控制场景的深度优化,成为高精度、高可靠性驱动系统的核心选择。相较于通用型MCU,STM32在电机控制领域的核心优势集中体现在FOC(磁场定向控制)算法的硬件加速引擎与PWM死区时间的动态补...

关键字: STM32 电机控制

无线充电技术加速渗透消费电子与汽车电子领域,基于Qi协议的无线充电发射端开发成为智能设备能量补给的核心课题。传统模拟控制方案存在响应滞后、参数调整困难等问题,而基于STM32的数字PID控制结合FOD(Foreign O...

关键字: STM32 无线充电
关闭