当前位置:首页 > 单片机 > 单片机
[导读]SystemInit()这个函数出现在main()函数的第一行,可以看出它的重要性。以前关于SystemInit()这个函数从来没有关心过,只知道这是进行STM32系统初始化的一个函数。今天决定仔细看看,重新开始STM32的学习。这个函数在

SystemInit()这个函数出现在main()函数的第一行,可以看出它的重要性。以前关于SystemInit()这个函数从来没有关心过,只知道这是进行STM32系统初始化的一个函数。今天决定仔细看看,重新开始STM32的学习。这个函数在system_stm32f10x.c中,此C文件主要就是干具体硬件配置相关的工作。




void SystemInit (void)

{



RCC->CR |= (uint32_t)0x00000001;



#ifndef STM32F10X_CL

RCC->CFGR &= (uint32_t)0xF8FF0000;

#else

RCC->CFGR &= (uint32_t)0xF0FF0000;

#endif



RCC->CR &= (uint32_t)0xFEF6FFFF;



RCC->CR &= (uint32_t)0xFFFBFFFF;



RCC->CFGR &= (uint32_t)0xFF80FFFF;


#ifdef STM32F10X_CL


RCC->CR &= (uint32_t)0xEBFFFFFF;



RCC->CIR = 0x00FF0000;



RCC->CFGR2 = 0x00000000;

#elif defined (STM32F10X_LD_VL) || defined (STM32F10X_MD_VL) || (defined STM32F10X_HD_VL)


RCC->CIR = 0x009F0000;



RCC->CFGR2 = 0x00000000;

#else


RCC->CIR = 0x009F0000;

#endif


#if defined (STM32F10X_HD) || (defined STM32F10X_XL) || (defined STM32F10X_HD_VL)

#ifdef DATA_IN_ExtSRAM

SystemInit_ExtMemCtl();

#endif

#endif




SetSysClock();


#ifdef VECT_TAB_SRAM

SCB->VTOR = SRAM_BASE | VECT_TAB_OFFSET;

#else

SCB->VTOR = FLASH_BASE | VECT_TAB_OFFSET;

#endif

}



从函数说明来看,此函数功能就是初始化内部FALSH,PLL并且更新系统时钟。此函数需在复位启动后调用。

RCC->CR |= (uint32_t)0x00000001;


第一行代码操作时钟控制寄存器,将内部8M高速时钟使能,从这里可以看出系统启动后是首先依靠内部时钟源而工作的。

#ifndef STM32F10X_CL

RCC->CFGR &= (uint32_t)0xF8FF0000;

#else

RCC->CFGR &= (uint32_t)0xF0FF0000;


这两行代码则是操作时钟配置寄存器。其主要设置了MCO(微控制器时钟输出)PLL相关(PLL倍频系数,PLL输入时钟源),ADCPRE(ADC时钟),PPRE2(高速APB分频系数),PPRE1(低速APB分频系数),HPRE(AHB预分频系数),SW(系统时钟切换),开始时,系统时钟切换到HSI,由它作为系统初始时钟。宏STM32F10X_CL是跟具体STM32芯片相关的一个宏。


RCC->CR &= (uint32_t)0xFEF6FFFF;



RCC->CR &= (uint32_t)0xFFFBFFFF;



RCC->CFGR &= (uint32_t)0xFF80FFFF;


这几句话则是先在关闭HSE,CSS,,PLL等的情况下配置好与之相关参数然后开启,达到生效的目的。

#ifdef STM32F10X_CL


RCC->CR &= (uint32_t)0xEBFFFFFF;



RCC->CIR = 0x00FF0000;



RCC->CFGR2 = 0x00000000;

#elif defined (STM32F10X_LD_VL) || defined (STM32F10X_MD_VL) || (defined STM32F10X_HD_VL)


RCC->CIR = 0x009F0000;



RCC->CFGR2 = 0x00000000;

#else


RCC->CIR = 0x009F0000;

#endif


这一段主要是跟中断设置有关。开始时,我们需要禁止所有中断并且清除所有中断标志位。不同硬件有不同之处。

#if defined (STM32F10X_HD) || (defined STM32F10X_XL) || (defined STM32F10X_HD_VL)

#ifdef DATA_IN_ExtSRAM

SystemInit_ExtMemCtl();

#endif

#endif


这段跟设置外部RAM有关吧,我用到的STM32F103RBT与此无关。

SetSysClock();


此又是一个函数,主要是配置系统时钟频率。HCLK,PCLK2,PCLK1的分频值,分别代表AHB,APB2,和APB1。当然还干了其它的事情,配置FLASH延时周期和使能预取缓冲期。后面的这个配置具体还不了解。

#ifdef VECT_TAB_SRAM

SCB->VTOR = SRAM_BASE | VECT_TAB_OFFSET;

#else

SCB->VTOR = FLASH_BASE | VECT_TAB_OFFSET;

#endif


这段代码主要是实现向量表的重定位。依据你想要将向量表定位在内部SRAM中还是内部FLASH中。这个SCB开始没在STM32参考手册中发现,原来它是跟Cortex-M3内核相关的东西。所以ST公司就没有把它包含进来吧。内核的东西后面再了解,这里给自己提个醒。


然后再看看SystemInit()中的那个函数SetClock()又做了什么吧。

static void SetSysClock(void)

{

#ifdef SYSCLK_FREQ_HSE

SetSysClockToHSE();

#elif defined SYSCLK_FREQ_24MHz

SetSysClockTo24();

#elif defined SYSCLK_FREQ_36MHz

SetSysClockTo36();

#elif defined SYSCLK_FREQ_48MHz

SetSysClockTo48();

#elif defined SYSCLK_FREQ_56MHz

SetSysClockTo56();

#elif defined SYSCLK_FREQ_72MHz

SetSysClockTo72();

#endif



}


从中可以看出就是根据不同的宏来设置不同的系统时钟,这些宏就在跟此函数在同一个源文件里。官方很是考虑周到,我们只需要选择相应宏就能达到快速配置系统时钟的目的。

#if defined (STM32F10X_LD_VL) || (defined STM32F10X_MD_VL) || (defined STM32F10X_HD_VL)


#define SYSCLK_FREQ_24MHz 24000000

#else






#define SYSCLK_FREQ_72MHz 72000000

#endif


比如这里我需要配置系统时钟为72MHZ,则只需要将#define SYSCLK_FREQ_72MHz72000000两边的注释符去掉。
这个函数里面又有SetSysClockTo72()函数,这个函数就是具体操作寄存器进行配置了。

#elif defined SYSCLK_FREQ_72MHz


static void SetSysClockTo72(void)

{

__IO uint32_t StartUpCounter = 0, HSEStatus = 0;




RCC->CR |= ((uint32_t)RCC_CR_HSEON);



do

{

HSEStatus = RCC->CR & RCC_CR_HSERDY;

StartUpCounter++;

} while((HSEStatus == 0) && (StartUpCounter != HSE_STARTUP_TIMEOUT));


if ((RCC->CR & RCC_CR_HSERDY) != RESET)

{

HSEStatus = (uint32_t)0x01;

}

else

{

HSEStatus = (uint32_t)0x00;

}


if (HSEStatus == (uint32_t)0x01)

{


FLASH->ACR |= FLASH_ACR_PRFTBE;



FLASH->ACR &= (uint32_t)((uint32_t)~FLASH_ACR_LATENCY);

FLASH->ACR |= (uint32_t)FLASH_ACR_LATENCY_2;




RCC->CFGR |= (uint32_t)RCC_CFGR_HPRE_DIV1;



RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE2_DIV1;



RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE1_DIV2;


#ifdef STM32F10X_CL





RCC->CFGR2 &= (uint32_t)~(RCC_CFGR2_PREDIV2 | RCC_CFGR2_PLL2MUL |

RCC_CFGR2_PREDIV1 | RCC_CFGR2_PREDIV1SRC);

RCC->CFGR2 |= (uint32_t)(RCC_CFGR2_PREDIV2_DIV5 | RCC_CFGR2_PLL2MUL8 |

RCC_CFGR2_PREDIV1SRC_PLL2 | RCC_CFGR2_PREDIV1_DIV5);



RCC->CR |= RCC_CR_PLL2ON;


while((RCC->CR & RCC_CR_PLL2RDY) == 0)

{

}




RCC->CFGR &= (uint32_t)~(RCC_CFGR_PLLXTPRE | RCC_CFGR_PLLSRC | RCC_CFGR_PLLMULL);

RCC->CFGR |= (uint32_t)(RCC_CFGR_PLLXTPRE_PREDIV1 | RCC_CFGR_PLLSRC_PREDIV1 |

RCC_CFGR_PLLMULL9);

#else


RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_PLLSRC | RCC_CFGR_PLLXTPRE |

RCC_CFGR_PLLMULL));

RCC->CFGR |= (uint32_t)(RCC_CFGR_PLLSRC_HSE | RCC_CFGR_PLLMULL9);

#endif



RCC->CR |= RCC_CR_PLLON;



while((RCC->CR & RCC_CR_PLLRDY) == 0)

{

}



RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_SW));

RCC->CFGR |= (uint32_t)RCC_CFGR_SW_PLL;



while ((RCC->CFGR & (uint32_t)RCC_CFGR_SWS) != (uint32_t)0x08)

{

}

}

else

{

}

}

#endif


上面的代码需要细细看。SystemInit()差不多就是这样了。


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在微控制器领域,MSP430与STM32无疑是两颗璀璨的明星。它们各自凭借其独特的技术特点和广泛的应用领域,在市场上占据了重要的位置。本文将深入解析MSP430与STM32之间的区别,探讨它们在不同应用场景下的优势和局限...

关键字: MSP430 STM32 单片机

STM32是由意法半导体公司(STMicroelectronics)推出的基于ARM Cortex-M内核的32位微控制器系列,以其高性能、低功耗、丰富的外设接口和强大的生态系统深受广大嵌入式开发者喜爱。本文将详细介绍S...

关键字: STM32 单片机

STM32与51单片机之间有什么差异呢?两者可以说是一场科技与性能的较量了。在科技飞速发展的今天,微控制器(MCU)已广泛应用于各类电子设备和系统中,发挥着举足轻重的作用。其中,STM32和51单片机作为两种常见的微控制...

关键字: STM32 51单片机 MCU

电磁铁是一种利用电流产生磁场的装置,具有快速响应、易于控制等特点,在工业自动化、电子设备、科学实验等领域有着广泛的应用。STM32是一款功能强大的微控制器,具有高性能、低功耗、易于编程等优点,是控制电磁铁的理想选择。本文...

关键字: 电磁铁 微控制器 STM32

边缘人工智能的实现涉及到三个基本 要素:安全性,连接性、自主性,而其中自主性是AI能力的体现,也是边缘AI有别于其他传统的物联网的关键。而通过ST Edge AI套件,就可以帮助各种不同类型的开发者实现覆盖全硬件平台的全...

关键字: 边缘人工智能 AI STM32

今天,小编将在这篇文章中为大家带来STM32单片机最小系统的有关报道,通过阅读这篇文章,大家可以对它具备清晰的认识,主要内容如下。

关键字: 单片机 单片机最小系统 STM32

STM32是一款由STMicroelectronics生产的微控制器系列,具有高性能、低功耗和丰富的外设资源。其中,串口通信是一种常用的通信方式,可以实现与其他设备之间的数据传输。

关键字: STM32 串口通信 微控制器

STM32是一种广泛使用的微控制器,具有丰富的通信接口。其中,串口通信是STM32与其他设备或系统进行数据交换的重要方式之一。本文将详细介绍STM32串口通信的原理、应用及常见故障。

关键字: STM32 串口通信

由于目前缺乏相应的监测技术,地下电缆线路出现异常运行状态无法被及时发现,久而久之易演变成大故障,最终只能通过更换地下电缆进行修复,耗费大量的人力、物力。鉴于此,开发了一种基于STM32的地下电缆异常状态检测系统,利用热传...

关键字: STM32 地下电缆

交通灯控制器是用于控制交通信号灯运行的设备,它可以根据交通流量、行人需求以及其他因素,动态地调整信号灯的变化时间和绿灯时长,以保证交通的流畅和安全。

关键字: 交通信号灯 STM32
关闭
关闭