当前位置:首页 > 单片机 > 单片机
[导读]下面分别为库函数和直接操作寄存器的两个范便,我都已测试通过使用此程序前必要对GPIO设好为模拟输入方式=====================================库函数版=========================================void AD_CONFIG_S

下面分别为库函数和直接操作寄存器的两个范便,我都已测试通过

使用此程序前必要对GPIO设好为模拟输入方式

=====================================库函数版=========================================

void AD_CONFIG_SINGLE(void )
{
//先配置IO口:

ADC_InitTypeDef adcInitStruct;
////PB1 作为模拟通道输入引脚

RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1 , ENABLE);//使能ADC和GPIOC时钟
//配置ADC:
//将ADC配置成非扫描方式(就是每次处理时不会扫描本组内的所有端口),因为采用规则组时只有一个寄存器保存adc结果;单次模式。
adcInitStruct.ADC_Mode = ADC_Mode_Independent;
adcInitStruct.ADC_ScanConvMode = DISABLE;
adcInitStruct.ADC_ContinuousConvMode = DISABLE;
adcInitStruct.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;
adcInitStruct.ADC_DataAlign = ADC_DataAlign_Right;
adcInitStruct.ADC_NbrOfChannel = 1;
ADC_Init(ADC1, &adcInitStruct);

ADC_Cmd(ADC1, ENABLE);
ADC_TempSensorVrefintCmd(ENABLE);

ADC_ResetCalibration(ADC1);
while((ADC_GetResetCalibrationStatus(ADC1)));// && (timeOut--));

ADC_StartCalibration(ADC1);
while((ADC_GetCalibrationStatus(ADC1)));// && (timeOut--));

}
//每次扫描时调用函数:
u16 AD_sysGetAdcResult(void)
{
u16 ad;
ADC_RegularChannelConfig(ADC1, ADC_Channel_10, 1, ADC_SampleTime_55Cycles5);
ADC_ClearFlag(ADC1, ADC_FLAG_EOC);
ADC_SoftwareStartConvCmd(ADC1, ENABLE);
while(ADC_GetFlagStatus(ADC1,ADC_FLAG_EOC)==0);
ad = ADC_GetConversionValue(ADC1);

//ADC_TempSensorVrefintCmd(DISABLE);
//ADC_SoftwareStartConvCmd(ADC1, DISABLE);
//ADC_Cmd(ADC1, DISABLE);
return ad;

}

=====================================寄存器版=========================================


voidAD_CONFIG_SINGLE(void)
{
//先初始化 IO 口
//RCC->APB2ENR|=1<<2;//使能 PORTA 口时钟
//GPIOA->CRL&=0XFFFF0000;//PA0 1 2 3 anolog 输入
//通道 10/11 设置
RCC->APB2ENR|=1<<9;//ADC1 时钟使能
RCC->APB2RSTR|=1<<9;//ADC1 复位
RCC->APB2RSTR&=~(1<<9);//复位结束
RCC->CFGR&=~(3<<14);//分频因子清零
//SYSCLK/DIV2=12M ADC 时钟设置为 12M,ADC 最大时钟不能超过 14M!
//否则将导致 ADC 准确度下降!
RCC->CFGR|=2<<14;

ADC1->CR1&=0XF0FFFF;//工作模式清零
ADC1->CR1|=0<<16;//独立工作模式
ADC1->CR1&=~(1<<8);//非扫描模式
ADC1->CR2&=~(1<<1);//单次转换模式
ADC1->CR2&=~(7<<17);
ADC1->CR2|=7<<17;//软件控制转换
ADC1->CR2|=1<<20;//使用用外部触发(SWSTART)!!! 必须使用一个事件来触发
ADC1->CR2&=~(1<<11);//右对齐

ADC1->SQR1&=~(0XF<<20);
ADC1->SQR1&=0<<20;//1 个转换在规则序列中也就是只转换规则序列 1

//设置通道 0~3 的采样时间
ADC1->SMPR1|=7;//通道 10239.5 周期,提高采样时间可以提高精确度

ADC1->CR2|=1<<0;//开启 AD 转换器
ADC1->CR2|=1<<3;//使能复位校准
while(ADC1->CR2&1<<3);//等待校准结束
//该位由软件设置并由硬件清除。在校准寄存器被初始化后该位将被清除。
ADC1->CR2|=1<<2;//开启 AD 校准
while(ADC1->CR2&1<<2);//等待校准结束
//该位由软件设置以开始校准,并在校准结束时由硬件清除
}

//获得 ADC 值
//ch:通道值0~3
u16 AD_sysGetAdcResult(void)
{
//设置转换序列
ADC1->SQR3&=0XFFFFFFE0;//规则序列 1通道 ch
ADC1->SQR3|=10;
ADC1->CR2|=1<<22;//启动规则转换通道
while(!(ADC1->SR&1<<1));//等待转换结束
return ADC1->DR;//返回 adc 值
}


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在微控制器领域,MSP430与STM32无疑是两颗璀璨的明星。它们各自凭借其独特的技术特点和广泛的应用领域,在市场上占据了重要的位置。本文将深入解析MSP430与STM32之间的区别,探讨它们在不同应用场景下的优势和局限...

关键字: MSP430 STM32 单片机

STM32是由意法半导体公司(STMicroelectronics)推出的基于ARM Cortex-M内核的32位微控制器系列,以其高性能、低功耗、丰富的外设接口和强大的生态系统深受广大嵌入式开发者喜爱。本文将详细介绍S...

关键字: STM32 单片机

STM32与51单片机之间有什么差异呢?两者可以说是一场科技与性能的较量了。在科技飞速发展的今天,微控制器(MCU)已广泛应用于各类电子设备和系统中,发挥着举足轻重的作用。其中,STM32和51单片机作为两种常见的微控制...

关键字: STM32 51单片机 MCU

电磁铁是一种利用电流产生磁场的装置,具有快速响应、易于控制等特点,在工业自动化、电子设备、科学实验等领域有着广泛的应用。STM32是一款功能强大的微控制器,具有高性能、低功耗、易于编程等优点,是控制电磁铁的理想选择。本文...

关键字: 电磁铁 微控制器 STM32

边缘人工智能的实现涉及到三个基本 要素:安全性,连接性、自主性,而其中自主性是AI能力的体现,也是边缘AI有别于其他传统的物联网的关键。而通过ST Edge AI套件,就可以帮助各种不同类型的开发者实现覆盖全硬件平台的全...

关键字: 边缘人工智能 AI STM32

今天,小编将在这篇文章中为大家带来STM32单片机最小系统的有关报道,通过阅读这篇文章,大家可以对它具备清晰的认识,主要内容如下。

关键字: 单片机 单片机最小系统 STM32

STM32是一款由STMicroelectronics生产的微控制器系列,具有高性能、低功耗和丰富的外设资源。其中,串口通信是一种常用的通信方式,可以实现与其他设备之间的数据传输。

关键字: STM32 串口通信 微控制器

STM32是一种广泛使用的微控制器,具有丰富的通信接口。其中,串口通信是STM32与其他设备或系统进行数据交换的重要方式之一。本文将详细介绍STM32串口通信的原理、应用及常见故障。

关键字: STM32 串口通信

由于目前缺乏相应的监测技术,地下电缆线路出现异常运行状态无法被及时发现,久而久之易演变成大故障,最终只能通过更换地下电缆进行修复,耗费大量的人力、物力。鉴于此,开发了一种基于STM32的地下电缆异常状态检测系统,利用热传...

关键字: STM32 地下电缆

交通灯控制器是用于控制交通信号灯运行的设备,它可以根据交通流量、行人需求以及其他因素,动态地调整信号灯的变化时间和绿灯时长,以保证交通的流畅和安全。

关键字: 交通信号灯 STM32
关闭
关闭