当前位置:首页 > 单片机 > 单片机
[导读]前言:本来用不到串口,但在最近在读取传感器数据的时候数据发生了错误,被师兄推荐用串口来检查一下究竟读出的数据是什么,因此学习了串口的使用。事实证明,串口很有用,也没有想象中的那么复杂...一、关于串口需要

前言:本来用不到串口,但在最近在读取传感器数据的时候数据发生了错误,被师兄推荐用串口来检查一下究竟读出的数据是什么,因此学习了串口的使用。事实证明,串口很有用,也没有想象中的那么复杂...

一、关于串口需要了解的几个知识点:
1.波特率:在串行通讯中,数据是按位进行传送的,因此传送速率用每秒钟传送格式位的数目来表示,称之为波特率。
波特率决定了串口传输的速度,1波特=1bps(位/秒)。波特率为9600的话就是1s传输9600位的数据。
串口的传输与网络等其他的传输有着相似之处,比如我么常用的wifi,区别在与这些网络的单位是k,只有串口是按位来计数的。
2.单工,半双工,全双工:
单工:只能一个方向传输
半双工:可以两个方向传输,但需要分时复用
全双工:两个方向传输


二、初始化函数
串口的初始化包括以下几部分:
1.时钟初始化:
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1,ENABLE);//串口1
RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO,ENABLE);//端口复用

初始化的时候一共有三个时钟需要打开,一是IO口,二是串口,三是端口复用。
STM32的串口1用的是PA9、PA10两个端口,因此初始化的时候打开的是GPIOA的时钟。加粗部分是重点,我在用端口的时候就没有加这句话,导致一直不好使。要区分开端口复用和端口重映射,它们完全是两个不同的概念。在51单片机里面,没有端口复用这种用法,某个端口在用作串口的时候也会被当做普通IO来区分,这就像你洗衣服的时候各种衣服都混在一起洗,不加以区分。但是到了STM32的时候,这里有一个复用功能,当你洗浅色衣服的时候,深色的衣服不会进入到这个盆里,这就避免了许多问题,这也是STM32比51高级的地方。

2.IO初始化:
PA9是发送口,在设置的时候注意要相应的设为复用推挽输出。
PA10是接收口,在设置的时候要设为浮空输入,由于是输入,所以没有必要再设置口线翻转速度。

3.串口初始化:
USART_InitTypeDefUSART_InitStructure;
USART_InitStructure.USART_BaudRate=9600;//波特率:9600
USART_InitStructure.USART_WordLength=USART_WordLength_8b;//数据长度:8位
USART_InitStructure.USART_StopBits=USART_StopBits_1;//停止位:1位
USART_InitStructure.USART_Parity=USART_Parity_No;//校验位:无
USART_InitStructure.USART_HardwareFlowControl=USART_HardwareFlowControl_None;//数据流:无
USART_InitStructure.USART_Mode=USART_Mode_Rx|USART_Mode_Tx;//使能接收、发送模式
USART_Init(USART1,&USART_InitStructure);

以上是串口的结构体变量的初始化设置。一般情况下的串口初始化都是上面这种情况,数据流这个我们一般是用不到的,它是一个关于调制解调的东西,这里不做深入探究。

USART_ITConfig(USART1,USART_IT_RXNE,ENABLE);//打开接收中断标志使能
USART_Cmd(USART1,ENABLE);//打开串口使能
USART_ClearFlag(USART1,USART_FLAG_TC);//清除发送完成标志位
接收中断标志使能是在使用串口接收中断的时候才需要的。
在这里清除发送完成标志位是为了避免接收不到第一个数据的情况。

4.中断初始化:
串口的使用方式有两种:查询、中断
一般情况下,发送数据常用查询方式,接收数据常用中断的方式。这和51的串口类似,查询就是判断发送或接收标志位是否被置位,中断是当接收到别的地方发来的数据的时候中断标志位就会溢出从而触发中断,打断主程序去执行中断服务程序。

中断:
与其他的中断设置方式类似,要设置中断分组,响应优先级,抢占优先级。
void NVIC_Configuration(void)
{
NVIC_InitTypeDef NVIC_InitStructure; //定义结构体
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1); //设置中断分组
NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn; //串口1的中断
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; //抢占优先级为0
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1; //响应优先级为1
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //打开中断
NVIC_Init(&NVIC_InitStructure);
}
注意如果用到中断的话还要使能接收中断,这个使能在串口初始化中完成,见上面。

三、串口的使用
1.查询方式:
在主程序里面使用时有两句话:
while(USART_GetFlagStatus(USART1,USART_FLAG_TXE)==RESET);//等待发送完成标志位被置位
USART_SendData(USART1,xxx);//向上位机发送数据
发送完成标志位被置位说明上一个数据已经发送完成了,于是进行下一个数据的发送

2.中断方式:
中断服务函数的编写套路如下:
void USART1_IRQHandler(void)
{
if(USART_GetITStatus(USART1,USART_IT_RXNE)!=RESET)//判断接收中断标志位是否置位,即是否有数据发送过来
{
xxx=USART_ReceiveData(USART1);//将接收到的数据赋给xxx
xxxxxxx。。。。
}
}

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在嵌入式开发中,STM32的时钟系统因其灵活性和复杂性成为开发者关注的焦点。然而,看似简单的时钟配置背后,隐藏着诸多易被忽视的陷阱,轻则导致系统不稳定,重则引发硬件损坏。本文从时钟源选择、PLL配置、总线时钟分配等关键环...

关键字: STM32 时钟系统

在嵌入式系统开发中,STM32系列微控制器的内部温度传感器因其低成本、高集成度特性,广泛应用于设备自检、环境监测等场景。然而,受芯片工艺差异和电源噪声影响,其原始数据存在±1.5℃的固有误差。本文从硬件配置、校准算法、软...

关键字: STM32 温度传感器

在能源效率与智能化需求双重驱动下,AC-DC转换器的数字控制技术正经历从传统模拟方案向全数字架构的深刻变革。基于STM32微控制器的PFM(脉冲频率调制)+PWM(脉冲宽度调制)混合调制策略,结合动态电压调整(Dynam...

关键字: AC-DC STM32

当前智能家居产品需求不断增长 ,在这一背景下 ,对现有浇花装置缺陷进行了改进 ,设计出基于STM32单片机的全 自动家用浇花机器人。该设计主要由机械结构和控制系统构成 ,机械结构通过麦克纳姆轮底盘与喷洒装置的结合实现机器...

关键字: STM32 麦克纳姆轮 安全可靠 通过性强

用c++编程似乎是让你的Arduino项目起步的障碍吗?您想要一种更直观的微控制器编程方式吗?那你需要了解一下Visuino!这个图形化编程平台将复杂电子项目的创建变成了拖动和连接块的简单任务。在本文中,我们将带您完成使...

关键字: Visuino Arduino ESP32 STM32

基于STM32与LoRa技术的无线传感网络凭借其低功耗、广覆盖、抗干扰等特性,成为环境监测、工业自动化等场景的核心解决方案。然而,如何在复杂电磁环境中实现高效休眠调度与动态信道优化,成为提升网络能效与可靠性的关键挑战。本...

关键字: STM32 LoRa

在实时控制系统、高速通信协议处理及高精度数据采集等对时间敏感的应用场景中,中断响应延迟的优化直接决定了系统的可靠性与性能上限。STM32系列微控制器凭借其灵活的嵌套向量中断控制器(NVIC)、多通道直接内存访问(DMA)...

关键字: STM32 DMA

数字电源技术向高功率密度、高效率与高动态响应方向加速演进,STM32微控制器凭借其基于DSP库的算法加速能力与对LLC谐振变换器的精准控制架构,成为优化电源动态性能的核心平台。相较于传统模拟控制或通用型数字控制器,STM...

关键字: STM32 数字电源

STM32微控制器凭借其针对电机控制场景的深度优化,成为高精度、高可靠性驱动系统的核心选择。相较于通用型MCU,STM32在电机控制领域的核心优势集中体现在FOC(磁场定向控制)算法的硬件加速引擎与PWM死区时间的动态补...

关键字: STM32 电机控制

无线充电技术加速渗透消费电子与汽车电子领域,基于Qi协议的无线充电发射端开发成为智能设备能量补给的核心课题。传统模拟控制方案存在响应滞后、参数调整困难等问题,而基于STM32的数字PID控制结合FOD(Foreign O...

关键字: STM32 无线充电
关闭