当前位置:首页 > 单片机 > 单片机
[导读]stm32f103最少有2个AD模数转换器,每个ADC都有18个通道,可以测量16个外部和2个内部模拟量。最大转换频率为1Mhz,也就是转换时间为1us(在 ADCCLK = 14Mhz,采样周期为1.5个时钟周期时)。最大时钟超过14Mhz,将导致A

stm32f103最少有2个AD模数转换器,每个ADC都有18个通道,可以测量16个外部和2个内部模拟量。最大转换频率为1Mhz,也就是转换时间为1us(在 ADCCLK = 14Mhz,采样周期为1.5个时钟周期时)。最大时钟超过14Mhz,将导致ADC转换准确度降低。stm32的ADC是12位精度的。

stm32的ADC转换有两种通道,规则通道和注入通道,注入通道可以抢占式地打断规则通道的采样,执行注入通道采样后,再执行之前的规则通道采样,和中断类似。本例只使用规则通道实现独立模式的中断采样,这里不再赘述两种通道区别。

stm32的ADC可以由外部事件触发(例如定时器捕获,EXTI线)和软件触发(即在配置相关寄存器时,直接开启采样)。

本例实现AD采样PB0口,使用串口输出PB0口电压值。PB0口接变阻器以改变调整电压。

效果如下:

ADValue = 1.39v

ADValue = 1.38v

ADValue = 1.40v

ADValue = 1.38v

ADValue = 1.39v


直接操作寄存器

首先需要配置ADC的时钟分频值,在RCC->CFGR的[15:14]位:

00:PCLK2 2分频后作为ADC时钟 01:PCLK2 4分频后作为ADC时钟

10:PCLK2 6分频后作为ADC时钟 11:PCLK2 8分频后作为ADC时钟

设定各通道的采样时间ADCx->SMPR,该寄存器给每个通道3位来选择8种采样周期:

000:1.5周期 100:41.5周期

001:7.5周期 101:55.5周期

010:13.5周期 110:71.5周期

011:28.5周期 111:239.5周期

采样时间算法为:(采样周期+12.5)/分频后的时钟

ADC采样得到的只是一个相对值,将 转换值/4096*参考电压 即可得到采样电压 这里的4096是因为stm32的adc为12位精度,表示参考电压时即为 2^12=4096

代码如下: (system.h 和stm32f10x_it.h等相关代码参照stm32 直接操作寄存器开发环境配置)

User/main.c

#include#include"system.h"#include"usart.h"#include"adc.h"#include"stdio.h"#defineLED1PAout(4)#defineLED2PAout(5)#defineVREF3.3//参考电压voidGpio_Init(void);intmain(void){u16ADValue;floattemp;Rcc_Init(9);//系统时钟设置Usart1_Init(72,9600);//设置串口时钟和波特率Adc1_Init(8,7);//使用8通道采样,采样时间系数为7(111),据手册可得采样时间为(239.5+12.5)/12=21(us)Gpio_Init();while(1){ADValue=Get_Adc(ADC_1,8);temp=(float)VREF*(ADValue/4096);//ADC精度为12位精度,即达到VREF电压时为2^12=4096printf("rnADValue=%.2fvrn",temp);LED2=!LED2;delay(100000);//延时100ms}}voidGpio_Init(void){RCC->APB2ENR|=1<<2;//使能PORTA时钟RCC->APB2ENR|=1<<3;//使能PORTB时钟GPIOA->CRL&=0xFF0FFFF0;GPIOA->CRL|=0xFF3FFFF0;//PA0设置为模拟输入,PA4推挽输出GPIOB->CRL&=0xFFFFFFF0;GPIOB->CRL|=0xFFFFFFF0;//PB0设置为模拟输入//USART1串口I/O设置GPIOA->CRH&=0xFFFFF00F;//设置USART1的Tx(PA.9)为第二功能推挽,50MHz;Rx(PA.10)为浮空输入GPIOA->CRH|=0x000008B0;}

Library/src/adc.c

#include#include"adc.h"//ADC1采样初始化//独立工作模式//参数说明://ADC_CH_x选择使用通道(0~17),目前暂支持0~15通道//ADC_CH_SMP设定采样周期(0~7)//采样周期算法:voidAdc1_Init(u8ADC_CH_x,u8ADC_CH_SMP){RCC->APB2ENR|=1<<9;//开启ADC1时钟RCC->APB2RSTR|=1<<9;//复位ADC1RCC->APB2RSTR&=~(1<<9);//ADC1复位结束RCC->CFGR&=~(3<<14);//分频因子清零RCC->CFGR|=2<<14;//设定分频因数为2,PCLK26分频后作为ADC时钟ADC1->CR1&=0xF0FFFF;//工作模式清零ADC1->CR1|=0<<16;//设定为独立模式ADC1->CR1&=~(1<<8);//非扫描工作模式ADC1->CR2&=~(1<<1);//关闭连续转换ADC1->CR2&=~(7<<17);//清除规则通道启动事件ADC1->CR2|=7<<17;//设定规则通道启动事件为软件启动(SWSTART)ADC1->CR2|=1<<20;//使用外部事件触发SWSTARTADC1->CR2&=~(1<<11);//设置对齐模式为右对齐ADC1->SQR1&=~(0xF<<20);//清零规则序列的数量ADC1->SQR1|=15<<20;//设置规则序列的数量为16ADC1->SMPR2&=0x00000000;//清零通道采样时间ADC1->SMPR1&=0xFF000000;if(ADC_CH_x<=9){ADC1->SMPR2|=7<<(ADC_CH_x*3);//设置通道x采样时间,提高采样时间可以提高采样精度}if(ADC_CH_x>9){ADC1->SMPR1|=7<<((ADC_CH_x-10)*3);}ADC1->CR2|=1<<0;//开启AD转换ADC1->CR2|=1<<3;//使能复位校准,由硬件清零while((ADC1->CR2)&(1<<3));//等待校准结束ADC1->CR2|=1<<2;//开启AD校准,由硬件清零while((ADC1->CR2)&(1<<2));//等待校准结束}//取得数模转换的值//参数说明:(参数定义于adc.h)//ADC_x(0~3),选择数模转换器//ADC_CH_x(0~15),选择通道u16Get_Adc(u8ADC_x,u8ADC_CH_x){u16data=0;switch(ADC_x){case1:{ADC1->SQR3&=0xFFFFFFE0;//清除通道选择ADC1->SQR3|=ADC_CH_x;//选择通道ADC1->CR2|=1<<22;//开启AD转换while(!(ADC1->SR&1<<1));//等待转换结束data=ADC1->DR;break;}case2:{break;}case3:{break;}}returndata;}

Library/inc/adc.h

#include#defineADC_10x01#defineADC_20x02#defineADC_30x03voidAdc1_Init(u8ADC_CH_x,u8ADC_CH_SMP);u16Get_Adc(u8ADC_x,u8ADC_CH_x);

库函数操作

main.c

#include"stm32f10x.h"#include"stdio.h"#definePRINTF_ON1#defineVREF3.3//参考电压voidRCC_Configuration(void);voidGPIO_Configuration(void);voidUSART_Configuration(void);voidADC_Configuration(void);intmain(void){floatADValue=0.00;u32delayTime=0;RCC_Configuration();GPIO_Configuration();USART_Configuration();ADC_Configuration();while(1){if(delayTime++>=2000000){delayTime=0;ADValue=VREF*ADC_GetConversionValue(ADC1)/0x0fff;printf("rnADValue=%.2fvrn",ADValue);}}}voidGPIO_Configuration(void){GPIO_InitTypeDefGPIO_InitStructure;GPIO_InitStructure.GPIO_Pin=GPIO_Pin_0;GPIO_InitStructure.GPIO_Mode=GPIO_Mode_AIN;GPIO_Init(GPIOA,&GPIO_InitStructure);GPIO_InitStructure.GPIO_Pin=GPIO_Pin_9;GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz;GPIO_InitStructure.GPIO_Mode=GPIO_Mode_AF_PP;GPIO_Init(GPIOA,&GPIO_InitStructure);GPIO_InitStructure.GPIO_Pin=GPIO_Pin_10;GPIO_InitStructure.GPIO_Mode=GPIO_Mode_IN_FLOATING;GPIO_Init(GPIOA,&GPIO_InitStructure);}voidADC_Configuration(void){ADC_InitTypeDefADC_InitStructure;RCC_ADCCLKConfig(RCC_PCLK2_Div4);//配置ADC时钟分频ADC_InitStructure.ADC_Mode=ADC_Mode_Independent;ADC_InitStructure.ADC_ScanConvMode=ENABLE;ADC_InitStructure.ADC_ContinuousConvMode=ENABLE;ADC_InitStructure.ADC_ExternalTrigConv=ADC_ExternalTrigConv_None;ADC_InitStructure.ADC_DataAlign=ADC_DataAlign_Right;ADC_InitStructure.ADC_NbrOfChannel=1;ADC_Init(ADC1,&ADC_InitStructure);ADC_RegularChannelConfig(ADC1,ADC_Channel_8,1,ADC_SampleTime_55Cycles5);ADC_Cmd(ADC1,ENABLE);ADC_ResetCalibration(ADC1);while(ADC_GetResetCalibrationStatus(ADC1));ADC_StartCalibration(ADC1);while(ADC_GetCalibrationStatus(ADC1));ADC_SoftwareStartConvCmd(ADC1,ENABLE);}voidRCC_Configuration(void){/*定义枚举类型变量HSEStartUpStatus*/ErrorStatusHSEStartUpStatus;/*复位系统时钟设置*/RCC_DeInit();/*开启HSE*/RCC_HSEConfig(RCC_HSE_ON);/*等待HSE起振并稳定*/HSEStartUpStatus=RCC_WaitForHSEStartUp();/*判断HSE起是否振成功,是则进入if()内部*/if(HSEStartUpStatus==SUCCESS){/*选择HCLK(AHB)时钟源为SYSCLK1分频*/RCC_HCLKConfig(RCC_SYSCLK_Div1);/*选择PCLK2时钟源为HCLK(AHB)1分频*/RCC_PCLK2Config(RCC_HCLK_Div1);/*选择PCLK1时钟源为HCLK(AHB)2分频*/RCC_PCLK1Config(RCC_HCLK_Div2);/*设置FLASH延时周期数为2*/FLASH_SetLatency(FLASH_Latency_2);/*使能FLASH预取缓存*/FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);/*选择锁相环(PLL)时钟源为HSE1分频,倍频数为9,则PLL输出频率为8MHz*9=72MHz*/RCC_PLLConfig(RCC_PLLSource_HSE_Div1,RCC_PLLMul_9);/*使能PLL*/RCC_PLLCmd(ENABLE);/*等待PLL输出稳定*/while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY)==RESET);/*选择SYSCLK时钟源为PLL*/RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);/*等待PLL成为SYSCLK时钟源*/while(RCC_GetSYSCLKSource()!=0x08);}/*打开APB2总线上的GPIOA时钟*/RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA|RCC_APB2Periph_USART1|RCC_APB2Periph_GPIOB|RCC_APB2Periph_ADC1,ENABLE);//RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2,ENABLE);}voidUSART_Configuration(void){USART_InitTypeDefUSART_InitStructure;USART_ClockInitTypeDefUSART_ClockInitStructure;USART_ClockInitStructure.USART_Clock=USART_Clock_Disable;USART_ClockInitStructure.USART_CPOL=USART_CPOL_Low;USART_ClockInitStructure.USART_CPHA=USART_CPHA_2Edge;USART_ClockInitStructure.USART_LastBit=USART_LastBit_Disable;USART_ClockInit(USART1,&USART_ClockInitStructure);USART_InitStructure.USART_BaudRate=9600;USART_InitStructure.USART_WordLength=USART_WordLength_8b;USART_InitStructure.USART_StopBits=USART_StopBits_1;USART_InitStructure.USART_Parity=USART_Parity_No;USART_InitStructure.USART_HardwareFlowControl=USART_HardwareFlowControl_None;USART_InitStructure.USART_Mode=USART_Mode_Rx|USART_Mode_Tx;USART_Init(USART1,&USART_InitStructure);USART_Cmd(USART1,ENABLE);}#ifPRINTF_ONintfputc(intch,FILE*f){USART_SendData(USART1,(u8)ch);while(USART_GetFlagStatus(USART1,USART_FLAG_TC)==RESET);returnch;}#endif

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在微控制器领域,MSP430与STM32无疑是两颗璀璨的明星。它们各自凭借其独特的技术特点和广泛的应用领域,在市场上占据了重要的位置。本文将深入解析MSP430与STM32之间的区别,探讨它们在不同应用场景下的优势和局限...

关键字: MSP430 STM32 单片机

STM32是由意法半导体公司(STMicroelectronics)推出的基于ARM Cortex-M内核的32位微控制器系列,以其高性能、低功耗、丰富的外设接口和强大的生态系统深受广大嵌入式开发者喜爱。本文将详细介绍S...

关键字: STM32 单片机

STM32与51单片机之间有什么差异呢?两者可以说是一场科技与性能的较量了。在科技飞速发展的今天,微控制器(MCU)已广泛应用于各类电子设备和系统中,发挥着举足轻重的作用。其中,STM32和51单片机作为两种常见的微控制...

关键字: STM32 51单片机 MCU

电磁铁是一种利用电流产生磁场的装置,具有快速响应、易于控制等特点,在工业自动化、电子设备、科学实验等领域有着广泛的应用。STM32是一款功能强大的微控制器,具有高性能、低功耗、易于编程等优点,是控制电磁铁的理想选择。本文...

关键字: 电磁铁 微控制器 STM32

边缘人工智能的实现涉及到三个基本 要素:安全性,连接性、自主性,而其中自主性是AI能力的体现,也是边缘AI有别于其他传统的物联网的关键。而通过ST Edge AI套件,就可以帮助各种不同类型的开发者实现覆盖全硬件平台的全...

关键字: 边缘人工智能 AI STM32

今天,小编将在这篇文章中为大家带来STM32单片机最小系统的有关报道,通过阅读这篇文章,大家可以对它具备清晰的认识,主要内容如下。

关键字: 单片机 单片机最小系统 STM32

STM32是一款由STMicroelectronics生产的微控制器系列,具有高性能、低功耗和丰富的外设资源。其中,串口通信是一种常用的通信方式,可以实现与其他设备之间的数据传输。

关键字: STM32 串口通信 微控制器

STM32是一种广泛使用的微控制器,具有丰富的通信接口。其中,串口通信是STM32与其他设备或系统进行数据交换的重要方式之一。本文将详细介绍STM32串口通信的原理、应用及常见故障。

关键字: STM32 串口通信

由于目前缺乏相应的监测技术,地下电缆线路出现异常运行状态无法被及时发现,久而久之易演变成大故障,最终只能通过更换地下电缆进行修复,耗费大量的人力、物力。鉴于此,开发了一种基于STM32的地下电缆异常状态检测系统,利用热传...

关键字: STM32 地下电缆

交通灯控制器是用于控制交通信号灯运行的设备,它可以根据交通流量、行人需求以及其他因素,动态地调整信号灯的变化时间和绿灯时长,以保证交通的流畅和安全。

关键字: 交通信号灯 STM32
关闭
关闭