当前位置:首页 > 单片机 > 单片机
[导读]一、在STM32中,有5个时钟源,为HSI,HSE,LSI,LSE,PLL.①HSI是高速内部时钟,RC振荡器,频率为8MHz;②HSE--高速外部时钟,可接石英或者陶瓷谐振器,或者外部时钟源,频率范围4MHz--15MHz.③LSI--低速内部时钟,RC 振荡

一、在STM32中,有5个时钟源,为HSI,HSE,LSI,LSE,PLL.

①HSI是高速内部时钟,RC振荡器,频率为8MHz;

②HSE--高速外部时钟,可接石英或者陶瓷谐振器,或者外部时钟源,频率范围4MHz--15MHz.

③LSI--低速内部时钟,RC 振荡器,频率为40kHz.

④LSE--低速外部时钟,接频率为32.768KHz的石英晶体。

⑤PLL为锁相环倍频输出,其时钟输入源可选择为HSI/2,HSE或者HSE/2,倍频可选择为2--16倍,但是其输出频率最大不得超过72MHz.

下图为STM32的时钟树。(图1)


图1

AHB (最大72M)

APB1 (最大36M): DAC, PWR, BKP, CAN, SRAM, I2C, USART2~5, SPI2/3, RTC, TIM2~7

APB2 (最大72M): ADC, SPI1, TIM1/8, GPIOA~F, EXTI, AFIO ,USART1

具体在RCC_Configuration函数中的体现。

第一步:系统时钟选择哪个,HSE、HSI还是PLLCLK。

RCC_HSEConfig(RCC_HSE_ON);//使用HSE

如果HSE时钟已经稳定,硬件会将RCC_CR的HSERDY位置1。

第二步:判断HSE时钟是否稳定

if(RCC_WaitForHSEStartUp()==SUCCESS)//SUCCESS的含义要提前定义

第三步:使能FLASH的预取址缓冲区,并设置FLASH的等待状态。(具体功能见FLASH部分)

FLASH_SetLatency(FLASH_Latency_2);//flash2等待状态,操作的一个延时

FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);//Flash读取缓冲,加速

第四步:设置AHB预分频系数。预分频系数可以是1、2、4、8、16、32、64、128、256;)(图2)

图2

RCC_HCLKConfig(RCC_SYSCLK_Div1);//AHB使用系统时钟//HCLK = SYSCLK

第五步:设置APB2的预分频系数,来确定PCLK2频率。预分频系数可以是1、2、4、8、16

RCC_PCLK2Config(RCC_HCLK_Div1);//APB2为HCLK/1//PCLK2 = HCLK/1

第六步:设置APB1的预分频系数,来确定PCLK1频率。预分频系数可以是1、2、4、8、16

RCC_PCLK1Config(RCC_HCLK_Div2);//APB1为HCLK/2//PCLK1 = HCLK/2

第七步:设置PLL的时钟源,以及PLL的倍频系数,来确定PLLCLK频率。(图3)

图3

RCC_PLLConfig(RCC_PLLSource_HSE_Div1,RCC_PLLMul_9);//PLLCLK = 8MHz * 9 =72MHz

第八步:使能PLL。将RCC_CR的PLLON位置1。

RCC_PLLCmd(ENABLE);//启动PLL //EnablePLL
如果PLL锁定后,硬件会将RCC_CR的PLLRDY位置1。

第九步:等待PLL锁定。

while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) ==RESET); //等待PLL启动

第十步:选择PLL作为SYSCLK(系统时钟源)

RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);//将PLL设置为系统时钟源

第十一步:等待系统时钟源的启动

while(RCC_GetSYSCLKSource() != 0x08);//等待系统时钟源的启动

第十二步:开启要使用的外设时钟

RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE);//打开GPIOA时钟
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOC,ENABLE);//打开GPIOC时钟
RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO,ENABLE);//该引脚(TX)属于复用功能引脚
RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1,ENABLE);//打开USART1 时钟

二、在STM32上如果不使用外部晶振,OSC_IN和OSC_OUT的接法,如果使用内部RC振荡器而不用外部晶振,请按照下面方法处理,

①对于100脚或者144脚的产品,OSC_IN应接地,OSC_OUT应悬空;

②对于少于100脚的产品,有2种接法,第一种:OSC_IN和OSC_OUT分别通过10K电阻接地,此方法可以提高EMC性能,第二种:分别重映射OSC_IN和OSC_OUT至PD0和PD1,再配置PD0和PD1为推挽输出,并输出0,此方法可以减小功耗并节省2个外部电阻。


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在嵌入式开发中,STM32的时钟系统因其灵活性和复杂性成为开发者关注的焦点。然而,看似简单的时钟配置背后,隐藏着诸多易被忽视的陷阱,轻则导致系统不稳定,重则引发硬件损坏。本文从时钟源选择、PLL配置、总线时钟分配等关键环...

关键字: STM32 时钟系统

在嵌入式系统开发中,STM32系列微控制器的内部温度传感器因其低成本、高集成度特性,广泛应用于设备自检、环境监测等场景。然而,受芯片工艺差异和电源噪声影响,其原始数据存在±1.5℃的固有误差。本文从硬件配置、校准算法、软...

关键字: STM32 温度传感器

在能源效率与智能化需求双重驱动下,AC-DC转换器的数字控制技术正经历从传统模拟方案向全数字架构的深刻变革。基于STM32微控制器的PFM(脉冲频率调制)+PWM(脉冲宽度调制)混合调制策略,结合动态电压调整(Dynam...

关键字: AC-DC STM32

当前智能家居产品需求不断增长 ,在这一背景下 ,对现有浇花装置缺陷进行了改进 ,设计出基于STM32单片机的全 自动家用浇花机器人。该设计主要由机械结构和控制系统构成 ,机械结构通过麦克纳姆轮底盘与喷洒装置的结合实现机器...

关键字: STM32 麦克纳姆轮 安全可靠 通过性强

用c++编程似乎是让你的Arduino项目起步的障碍吗?您想要一种更直观的微控制器编程方式吗?那你需要了解一下Visuino!这个图形化编程平台将复杂电子项目的创建变成了拖动和连接块的简单任务。在本文中,我们将带您完成使...

关键字: Visuino Arduino ESP32 STM32

基于STM32与LoRa技术的无线传感网络凭借其低功耗、广覆盖、抗干扰等特性,成为环境监测、工业自动化等场景的核心解决方案。然而,如何在复杂电磁环境中实现高效休眠调度与动态信道优化,成为提升网络能效与可靠性的关键挑战。本...

关键字: STM32 LoRa

在实时控制系统、高速通信协议处理及高精度数据采集等对时间敏感的应用场景中,中断响应延迟的优化直接决定了系统的可靠性与性能上限。STM32系列微控制器凭借其灵活的嵌套向量中断控制器(NVIC)、多通道直接内存访问(DMA)...

关键字: STM32 DMA

数字电源技术向高功率密度、高效率与高动态响应方向加速演进,STM32微控制器凭借其基于DSP库的算法加速能力与对LLC谐振变换器的精准控制架构,成为优化电源动态性能的核心平台。相较于传统模拟控制或通用型数字控制器,STM...

关键字: STM32 数字电源

STM32微控制器凭借其针对电机控制场景的深度优化,成为高精度、高可靠性驱动系统的核心选择。相较于通用型MCU,STM32在电机控制领域的核心优势集中体现在FOC(磁场定向控制)算法的硬件加速引擎与PWM死区时间的动态补...

关键字: STM32 电机控制

无线充电技术加速渗透消费电子与汽车电子领域,基于Qi协议的无线充电发射端开发成为智能设备能量补给的核心课题。传统模拟控制方案存在响应滞后、参数调整困难等问题,而基于STM32的数字PID控制结合FOD(Foreign O...

关键字: STM32 无线充电
关闭