当前位置:首页 > 单片机 > 单片机
[导读]首先是一些必要的声明#include#include"pwm.h"u32Sys_Clk=1000000;u16pwm1_2_Freqz;//pwm波1,2输出口的频率u16pwm3_4_Freqz;//pwm波3,4输出口的频率u16TIM2_PERIOD;//定时器跳转周期数u16TIM4_PERIOD;u16CCR_VAL1;//

首先是一些必要的声明

#include#include"pwm.h"u32Sys_Clk=1000000;u16pwm1_2_Freqz;//pwm波1,2输出口的频率u16pwm3_4_Freqz;//pwm波3,4输出口的频率u16TIM2_PERIOD;//定时器跳转周期数u16TIM4_PERIOD;u16CCR_VAL1;//定时器的比较寄存器的取值,当实际值大于此值时,电平取反u16CCR_VAL2;u16CCR_VAL3;u16CCR_VAL4;123456789101112

下面是正文……注释全是手打啊(≧▽≦)/

voidPWM_GPIO_Config(void)//用来配置外设功能的函数,总是以字符串"Config"结尾{GPIO_InitTypeDefGPIO_InitStructure;//PPP_InitTypeDef:初始化名为PPP的外设,这里是初始化GPIORCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA|RCC_APB2Periph_GPIOB|RCC_APB2Periph_AFIO,ENABLE);//开启时钟,状态:ENABLE即使能。Periph中文为外围设备。初始化GPIO之AB口,复用推挽输出RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2,ENABLE);//开启TIM2时钟关于APB1和APB2的分类见图1图2GPIO_InitStructure.GPIO_Pin=GPIO_Pin_2|GPIO_Pin_3;//初始化引脚2,3GPIO_InitStructure.GPIO_Mode=GPIO_Mode_AF_PP;//模式从枚举类型选其一GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz;//频率50兆赫兹GPIO_Init(GPIOA,&GPIO_InitStructure);//初始化A口RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM4,ENABLE);//开启TIM4时钟/*配置PB8,PB9为复用推挽模式*/GPIO_InitStructure.GPIO_Pin=GPIO_Pin_8|GPIO_Pin_9;//与之前同理GPIO_InitStructure.GPIO_Mode=GPIO_Mode_AF_PP;GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz;GPIO_Init(GPIOB,&GPIO_InitStructure);}123456789101112131415161718192021


好吧。刚刚只是把pwm输出要用的GPIO引脚配置好了。
接下来配置pwm时钟。

voidPWM_Mode_Config(void)//配置pwm模式{TIM4_PERIOD=Sys_Clk/pwm1_2_Freqz;//定时器的跳转周期数=系统时钟周期/pwm输出频率TIM2_PERIOD=Sys_Clk/pwm3_4_Freqz;CCR_VAL1=CCR_VAL2=TIM4_PERIOD>>1;//移位运算,使比较寄存器的值等于跳转周期数的一半,得到占空比为50%的pwm波CCR_VAL3=CCR_VAL4=TIM2_PERIOD>>1;/*定时器(即TIM)初始化*/TIM_TimeBaseStructure.TIM_Period=TIM4_PERIOD;//设置在下一个更新事件中装入自动重装载寄存器的周期值,对于TIM4TIM_TimeBaseStructure.TIM_Prescaler=72;//预分频值TIM_TimeBaseStructure.TIM_ClockDivision=TIM_CKD_DIV1;//时钟分割TIM_TimeBaseStructure.TIM_CounterMode=TIM_CounterMode_Up;//向上计数模式TIM_TimeBaseInit(TIM4,&TIM_TimeBaseStructure);//根据TIM_TimeBaseStructure中制定的参数初始化TIM4TIM_TimeBaseStructure.TIM_Period=TIM2_PERIOD;//设置在下一个更新事件中装入自动重装载寄存器的周期值,对于TIM4。其他参数与TIM2相同,故不再重复设置。TIM_TimeBaseInit(TIM2,&TIM_TimeBaseStructure);//根据TIM_TimeBaseStructure中制定的参数初始化TIM2/*定时器输出模式初始化*/TIM_OCInitStruct.TIM_OCMode=TIM_OCMode_PWM1;//TIM_OCInitStruct是经过TIM_OCInitTypeDef(图3)之后的,该结构体有多种参数。本行设置脉冲宽度调制模式1TIM_OCInitStruct.TIM_OutputState=TIM_OutputState_Enable;//比较输出使能TIM_OCInitStruct.TIM_Pulse=CCR_VAL4;//设置占空比50%TIM_OCInitStruct.TIM_OCPolarity=TIM_OCPolarity_High;//设置有效极性,也就是设置比较输出的有效电平。此处设置为高电平有效,当定时器比较匹配之后,输出口输出高电平TIM_OC3Init(TIM2,&TIM_OCInitStruct);//初始化TIM2的channel3(pwm4)TIM_OC3PreloadConfig(TIM2,TIM_OCPreload_Enable);//初始化完OCX之后,配置OCX的预装载寄存器,将其使能即可。TIM_OCInitStruct.TIM_OutputState=TIM_OutputState_Enable;//比较输出使能TIM_OCInitStruct.TIM_Pulse=CCR_VAL3;//设置占空比50%TIM_OC4Init(TIM2,&TIM_OCInitStruct);//初始化TIM2的channel4(pwm3)TIM_OC4PreloadConfig(TIM2,TIM_OCPreload_Enable);//配置OC4的预装载寄存器TIM_OCInitStruct.TIM_OutputState=TIM_OutputState_Enable;//比较输出使能TIM_OCInitStruct.TIM_Pulse=CCR_VAL2;//设置占空比50%TIM_OC3Init(TIM4,&TIM_OCInitStruct);//初始化TIM4的channel3(pwm2)TIM_OC3PreloadConfig(TIM4,TIM_OCPreload_Enable);//配置OC3的预装载寄存器TIM_OCInitStruct.TIM_OutputState=TIM_OutputState_Enable;//比较输出使能TIM_OCInitStruct.TIM_Pulse=CCR_VAL1;//设置占空比50%TIM_OC4Init(TIM4,&TIM_OCInitStruct);/初始化TIM4的channel4(pwm1)TIM_OC4PreloadConfig(TIM4,TIM_OCPreload_Enable);//配置OC4的预装载寄存器TIM_ARRPreloadConfig(TIM2,ENABLE);//配置完了所有通道后使能自动重装载寄存器,两个参数:TIMx,NewStateTIM_ARRPreloadConfig(TIM4,ENABLE);//同上TIM_Cmd(TIM2,ENABLE);//最后不要忘了Cmd该外设(使能),这是所有外设操作的最后一步TIM_Cmd(TIM4,ENABLE);//同上}1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253

前面两个函数略有些混乱。。。写了这么多自己都不知道功能了。下面贴一个封装的比较好的。。。学长写的。。。

voidTIM1_PWM_Init(void){TIM_TimeBaseInitTypeDefTIM_TimeBaseStructure;//必要的声明啦TIM_OCInitTypeDefTIM_OCInitStructure;GPIO_InitTypeDefGPIO_InitStructure;RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE);GPIO_InitStructure.GPIO_Pin=GPIO_Pin_11"GPIO_Pin_8;GPIO_InitStructure.GPIO_Mode=GPIO_Mode_AF_PP;GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz;GPIO_Init(GPIOA,&GPIO_InitStructure);RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1,ENABLE);TIM_TimeBaseStructure.TIM_Period=19999;TIM_TimeBaseStructure.TIM_Prescaler=71;TIM_TimeBaseStructure.TIM_ClockDivision=TIM_CKD_DIV1;TIM_TimeBaseStructure.TIM_CounterMode=TIM_CounterMode_Up;TIM_TimeBaseInit(TIM1,&TIM_TimeBaseStructure);TIM_OCInitStructure.TIM_OCMode=TIM_OCMode_PWM1;TIM_OCInitStructure.TIM_OutputState=TIM_OutputState_Enable;TIM_OCInitStructure.TIM_Pulse=1000;TIM_OCInitStructure.TIM_OCPolarity=TIM_OCPolarity_High;TIM_OC4Init(TIM1,&TIM_OCInitStructure);TIM_OC4PreloadConfig(TIM1,TIM_OCPreload_Enable);TIM_OCInitStructure.TIM_Pulse=2000;TIM_OC1Init(TIM1,&TIM_OCInitStructure);TIM_OC1PreloadConfig(TIM1,TIM_OCPreload_Enable);TIM_CtrlPWMOutputs(TIM1,ENABLE);TIM_ARRPreloadConfig(TIM1,ENABLE);TIM_Cmd(TIM1,ENABLE);}1234567891011121314151617181920212223242526272829303132333435363738

Well,Let’s simulate it!
添加引脚并设置阈值,看到分析窗如下:

无误!


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在嵌入式开发中,STM32的时钟系统因其灵活性和复杂性成为开发者关注的焦点。然而,看似简单的时钟配置背后,隐藏着诸多易被忽视的陷阱,轻则导致系统不稳定,重则引发硬件损坏。本文从时钟源选择、PLL配置、总线时钟分配等关键环...

关键字: STM32 时钟系统

在嵌入式系统开发中,STM32系列微控制器的内部温度传感器因其低成本、高集成度特性,广泛应用于设备自检、环境监测等场景。然而,受芯片工艺差异和电源噪声影响,其原始数据存在±1.5℃的固有误差。本文从硬件配置、校准算法、软...

关键字: STM32 温度传感器

在能源效率与智能化需求双重驱动下,AC-DC转换器的数字控制技术正经历从传统模拟方案向全数字架构的深刻变革。基于STM32微控制器的PFM(脉冲频率调制)+PWM(脉冲宽度调制)混合调制策略,结合动态电压调整(Dynam...

关键字: AC-DC STM32

当前智能家居产品需求不断增长 ,在这一背景下 ,对现有浇花装置缺陷进行了改进 ,设计出基于STM32单片机的全 自动家用浇花机器人。该设计主要由机械结构和控制系统构成 ,机械结构通过麦克纳姆轮底盘与喷洒装置的结合实现机器...

关键字: STM32 麦克纳姆轮 安全可靠 通过性强

用c++编程似乎是让你的Arduino项目起步的障碍吗?您想要一种更直观的微控制器编程方式吗?那你需要了解一下Visuino!这个图形化编程平台将复杂电子项目的创建变成了拖动和连接块的简单任务。在本文中,我们将带您完成使...

关键字: Visuino Arduino ESP32 STM32

基于STM32与LoRa技术的无线传感网络凭借其低功耗、广覆盖、抗干扰等特性,成为环境监测、工业自动化等场景的核心解决方案。然而,如何在复杂电磁环境中实现高效休眠调度与动态信道优化,成为提升网络能效与可靠性的关键挑战。本...

关键字: STM32 LoRa

在实时控制系统、高速通信协议处理及高精度数据采集等对时间敏感的应用场景中,中断响应延迟的优化直接决定了系统的可靠性与性能上限。STM32系列微控制器凭借其灵活的嵌套向量中断控制器(NVIC)、多通道直接内存访问(DMA)...

关键字: STM32 DMA

数字电源技术向高功率密度、高效率与高动态响应方向加速演进,STM32微控制器凭借其基于DSP库的算法加速能力与对LLC谐振变换器的精准控制架构,成为优化电源动态性能的核心平台。相较于传统模拟控制或通用型数字控制器,STM...

关键字: STM32 数字电源

STM32微控制器凭借其针对电机控制场景的深度优化,成为高精度、高可靠性驱动系统的核心选择。相较于通用型MCU,STM32在电机控制领域的核心优势集中体现在FOC(磁场定向控制)算法的硬件加速引擎与PWM死区时间的动态补...

关键字: STM32 电机控制

无线充电技术加速渗透消费电子与汽车电子领域,基于Qi协议的无线充电发射端开发成为智能设备能量补给的核心课题。传统模拟控制方案存在响应滞后、参数调整困难等问题,而基于STM32的数字PID控制结合FOD(Foreign O...

关键字: STM32 无线充电
关闭