当前位置:首页 > 单片机 > 单片机
[导读]DS18B20数字温度计是DALLAS公司生产的1-Wire,即单总线器件,具有线路简单,体积小的特点。因此用它来组成一个测温系统,具有线路简单,在一根通信线,可以挂很多这样的数字温度计,十分方便。

DS18B20数字温度计是DALLAS公司生产的1-Wire,即单总线器件,具有线路简单,体积小的特点。因此用它来组成一个测温系统,具有线路简单,在一根通信线,可以挂很多这样的数字温度计,十分方便。

1、DS18B20产品的特点

(1)、只要求一个端口即可实现通信。

(2)、在DS18B20中的每个器件上都有独一无二的序列号。

(3)、实际应用中不需要外部任何元器件即可实现测温。

(4)、测量温度范围在-55。C到+125。C之间。

(5)、数字温度计的分辨率用户可以从9位到12位选择。

(6)、内部有温度上、下限告警设置。

2、DS18B20的引脚介绍

TO-92封装的DS18B20的引脚排列见图1,其引脚功能描述见表1。

(底视图)

图1

 

表1 DS18B20详细引脚功能描述

序号

名称

引脚功能描述

1

GND

地信号

2

DQ

数据输入/输出引脚。开漏单总线接口引脚。当被用着在寄生电源下,也可以向器件提供电源。

3

VDD

可选择的VDD引脚。当工作于寄生电源时,此引脚必须接地。

3. DS18B20的使用方法

由于DS18B20采用的是1-Wire总线协议方式,即在一根数据线实现数据的双向传输,而对AT89S51单片机来说,硬件上并不支持单总线协议,因此,我们必须采用软件的方法来模拟单总线的协议时序来完成对DS18B20芯片的访问。

由于DS18B20是在一根I/O线上读写数据,因此,对读写的数据位有着严格的时序要求。DS18B20有严格的通信协议来保证各位数据传输的正确性和完整性。该协议定义了几种信号的时序:初始化时序、读时序、写时序。所有时序都是将主机作为主设备,单总线器件作为从设备。而每一次命令和数据的传输都是从主机主动启动写时序开始,如果要求单总线器件回送数据,在进行写命令后,主机需启动读时序完成数据接收。数据和命令的传输都是低位在先。

DS18B20的复位时序

 

DS18B20的读时序

对于DS18B20的读时序分为读0时序和读1时序两个过程。

对于DS18B20的读时隙是从主机把单总线拉低之后,在15秒之内就得释放单总线,以让DS18B20把数据传输到单总线上。DS18B20在完成一个读时序过程,至少需要60us才能完成。

 

DS18B20的写时序

对于DS18B20的写时序仍然分为写0时序和写1时序两个过程。

对于DS18B20写0时序和写1时序的要求不同,当要写0时序时,单总线要被拉低至少60us,保证DS18B20能够在15us到45us之间能够正确地采样IO总线上的“0”电平,当要写1时序时,单总线被拉低之后,在15us之内就得释放单总线。

 

4. 实验任务

用一片DS18B20构成测温系统,测量的温度精度达到0.1度,测量的温度的范围在-20度到+100度之间,用8位数码管显示出来。

5. 电路原理图

 

6. 系统板上硬件连线

(1). 把“单片机系统”区域中的P0.0-P0.7用8芯排线连接到“动态数码显示”区域中的ABCDEFGH端子上。

(2). 把“单片机系统”区域中的P2.0-P2.7用8芯排线连接到“动态数码显示”区域中的S1S2S3S4S5S6S7S8端子上。

(3). 把DS18B20芯片插入“四路单总线”区域中的任一个插座中,注意电源与地信号不要接反。

(4). 把“四路单总线”区域中的对应的DQ端子连接到“单片机系统”区域中的P3.7/RD端子上。

7. C语言源程序

#include

#include

unsigned char code displaybit[]={0xfe,0xfd,0xfb,0xf7,

0xef,0xdf,0xbf,0x7f};

unsigned char code displaycode[]={0x3f,0x06,0x5b,0x4f,

0x66,0x6d,0x7d,0x07,

0x7f,0x6f,0x77,0x7c,

0x39,0x5e,0x79,0x71,0x00,0x40};

unsigned char code dotcode[32]={0,3,6,9,12,16,19,22,

25,28,31,34,38,41,44,48,

50,53,56,59,63,66,69,72,

75,78,81,84,88,91,94,97};

unsigned char displaycount;

unsigned char displaybuf[8]={16,16,16,16,16,16,16,16};

unsigned char timecount;

unsigned char readdata[8];

sbit DQ=P3^7;

bit sflag;

bit resetpulse(void)

{

unsigned char i;

DQ=0;

for(i=255;i>0;i--);

DQ=1;

for(i=60;i>0;i--);

return(DQ);

for(i=200;i>0;i--);

}

void writecommandtods18b20(unsigned char command)

{

unsigned char i;

unsigned char j;

for(i=0;i<8;i++)

{

if((command & 0x01)==0)

{

DQ=0;

for(j=35;j>0;j--);

DQ=1;

}

else

{

DQ=0;

for(j=2;j>0;j--);

DQ=1;

for(j=33;j>0;j--);

}

command=_cror_(command,1);

}

}

unsigned char readdatafromds18b20(void)

{

unsigned char i;

unsigned char j;

unsigned char temp;

temp=0;

for(i=0;i<8;i++)

{

temp=_cror_(temp,1);

DQ=0;

_nop_();

_nop_();

DQ=1;

for(j=10;j>0;j--);

if(DQ==1)

{

temp=temp | 0x80;

}

else

{

temp=temp | 0x00;

}

for(j=200;j>0;j--);

}

return(temp);

}

void main(void)

{

TMOD=0x01;

TH0=(65536-4000)/256;

TL0=(65536-4000)%256;

ET0=1;

EA=1;

while(resetpulse());

writecommandtods18b20(0xcc);

writecommandtods18b20(0x44);

TR0=1;

while(1)

{

;

}

}

void t0(void) interrupt 1 using 0

{

unsigned char x;

unsigned int result;

TH0=(65536-4000)/256;

TL0=(65536-4000)%256;

if(displaycount==2)

{

P0=displaycode[displaybuf[displaycount]] | 0x80;

}

else

{

P0=displaycode[displaybuf[displaycount]];

}

P2=displaybit[displaycount];

displaycount++;

if(displaycount==8)

{

displaycount=0;

}

timecount++;

if(timecount==150)

{

timecount=0;

while(resetpulse());

writecommandtods18b20(0xcc);

writecommandtods18b20(0xbe);

readdata[0]=readdatafromds18b20();

readdata[1]=readdatafromds18b20();

for(x=0;x<8;x++)

{

displaybuf[x]=16;

}

sflag=0;

if((readdata[1] & 0xf8)!=0x00)

{

sflag=1;

readdata[1]=~readdata[1];

readdata[0]=~readdata[0];

result=readdata[0]+1;

readdata[0]=result;

if(result>255)

{

readdata[1]++;

}

}

readdata[1]=readdata[1]<<4;

readdata[1]=readdata[1] & 0x70;

x=readdata[0];

x=x>>4;

x=x & 0x0f;

readdata[1]=readdata[1] | x;

x=2;

result=readdata[1];

while(result/10)

{

displaybuf[x]=result%10;

result=result/10;

x++;

}

displaybuf[x]=result;

if(sflag==1)

{

displaybuf[x+1]=17;

}

x=readdata[0] & 0x0f;

x=x<<1;

displaybuf[0]=(dotcode[x])%10;

displaybuf[1]=(dotcode[x])/10;

while(resetpulse());

writecommandtods18b20(0xcc);

writecommandtods18b20(0x44);

}

}

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

DS18B20是常用的数字温度传感器,其输出的是数字信号,具有体积小,硬件开销低,抗干扰能力强,精度高的特点。

关键字: ds18b20 温度传感器 数字信号

#51单片机#DS18B20硬件原理以及通信的工作时序

关键字: ds18b20 通信

DS18B20型智能温度传感器的工作原理

关键字: ds18b20 原理

DS18B20是一款常用的高精度的单总线数字温度测量芯片。具有体积小,硬件开销低,抗干扰能力强,精度高的特点。

关键字: ds18b20 手册

DS18B20是一款常用的高精度的单总线数字温度测量芯片。具有体积小,硬件开销低,抗干扰能力强,精度高的特点。

关键字: ds18b20 引脚图

  1 引言   自动调温光疗系统是一种医用理疗仪器,其原理是采用单片机对可控硅的控制来控制高压下的激光输出器进行理疗,在激光输出器工作的同时对其进行实时温度检测,利用检测到的温度状况决

关键字: ds18b20 moc3021 自动调温

      Maxim医疗数字温度计内部框图如下图所示: 图 Maxim医疗数字温度计内部框图

关键字: 电路图 maxim 医疗电子 数字温度计

温度是表征环境的一个重要的参数。在工程领域,尤其像工程热力学等,温度检测非常普遍,对温度精确测量以便实时控制也显得尤为重要。

关键字: ds18b20 传感器 数据采集 matlab编程

单片机除了可以测量电信号外,还可以用与温度、湿度等非电信号的测量,能独立工作的单片机温度检测、温度控制系统已经广泛的应用于很多领域。单片机的接口信号是数字信号,要想用单片机作区温度这类非电信号,就要使用温度传感器将温度信...

关键字: ds18b20 数字温度计

DS1624是美国DALLAS公司生产的集成了测量系统和存储器于一体的芯片。数字接口电路简单,与I2C总线兼容,且可以使用一片控制器控制多达8片的DS1624。其数字温度输出达13位,精度为0.03125℃。DS1624...

关键字: 数字温度计 存储器功能
关闭
关闭