当前位置:首页 > 医疗电子 > 医疗电子
[导读]目前,超声图像诊断是与X线CT、同位素扫描、核磁共振等一样重要的医学图像诊断手段。根据肝脏超声图像进行脂肪肝的诊断,是病变确诊的主要方法。但是,与CT和核磁共振等医学图像相比,超声图像的图像质量较差,目前的诊断

目前,超声图像诊断是与X线CT、同位素扫描、核磁共振等一样重要的医学图像诊断手段。根据肝脏超声图像进行脂肪肝的诊断,是病变确诊的主要方法。但是,与CT和核磁共振等医学图像相比,超声图像的图像质量较差,目前的诊断以定性为主,受主观因素影响较大。研究肝脏超声图像的纹理特征,以便获得量化参数,并以此为依据进行病变的分类,为医生提供诊断依据,是非常必要的。基于以上原因,本文结合肝脏超声图像的特点,以图像分割为基本手段,提取特征参数,对超声图像的临床诊断具有重要意义。

1 系统简介

本系统利用B超机自带的图像输出接口与计算机相连,将采集到的图像送入图像处理软件,对图像进行实时处理,将得到的参数显示在电脑屏幕上,为医生的诊断提供参考。

2 方法介绍

肝脏B超图像的纹理是由于不同的肝脏组织纤维不同,使其对超声脉冲的吸收、衰减、反射有差异,超声脉冲又相互作用而形成的。因此,不同肝脏B超图像的纹理有明显不同,正常肝脏的肝实质回声呈稍低的细小光点,分布均匀,光点致密。发生病变后,回声增强,光点稀疏。所以光点的大小和密度就成为医生诊断的重要依据,所以对其进行量化,以此为肝脏超声图像的密度特征是十分必要的。

2.1 超声图像预处理

在超声图像中,主要的噪声来自于散斑(speckle),他是由于声束在不均匀微细组织的散射所引起的干涉作用造成的,他在图像中表现为颗粒状,并不反映实际的组织结构,但却影响了图像的细节分辨能力。这不利于图像的定量分析,因此需对图像中的散斑噪声进行抑制。在噪声的抑制中,因为超声图像中的噪声是乘法性噪声,属于与图像信号相关的噪声,因此线性滤波在平滑噪声的同时也对图像的细节信息进行了抑制。本文采用Loupas提出的适应性加权中值滤波来抑制超声图像的噪声。由于散斑的回波信号遵循平均值正比于标准偏差的瑞利分布,而Loupas已证明通过适应性加权中值滤波对图像散斑进行处理时,图像的局部灰度平均值变得正比于局部的方差而不是标准偏差,所以选用局部灰度平均值与局部方差的比作为图像的特征。

2.2 超声图像二值化

对于肝实质回声图像,经过预处理后,要进行二值化,二值化的关键是灰度阈值的计算。适当的阈值就是既要尽可能地保存图像信息,又要尽可能地减少背景和噪声的干扰。一般二值化阈值的计算方法有:对话式直方图法、松弛法、最大熵法、矩保持法和边界灰度门限法等。本文采用最大方差比的阈值设定方法,该算法先统计出图像的灰度直方图,然后把直方图在某阈值处分成2组c1和c2,使如下所示的分离度η(T)为最大值的T即为最佳阈值。

 (1)

式中σ2B(T)是类间方差;σ2W(T)是类内方差,可由式(4),(5)得到:

类间方差:

(2)

类内方差:

(3)

这里σ2B+σ2W=σ2T(σ2T为全局方差),w1和w2分别是类c1和c2的发生概率(标准化后的象素数),μ1和μ2以及σ21和σ22分别是类c1和c2的像素的灰度平均值和灰度方差。

2.3 颗粒图像中颗粒的提取

图像经二值化处理后,就是一些连通的黑色区域,本文通过贴标签法,对二值图像的每个不同的连接成分都进行不同的编号,所得到的图像成为标签图像,贴标签处理是计算连接成分大小,面积等属性中的必要处理手段,所得标签的最大值即为此超声图像亮点的量化值,由此实现了超声图像的量化处理。

3 结 果

首先将采集到的所有超声图像存储在计算机上。在所获取的B超图像中选定一个感兴趣区域ROI,将ROI区域取为30象素×30象素,用VC编程对其提取参数,并对结果进行了分析。分别对正常肝脏和脂肪肝进行二值化的结果如图1所示。

图1 超声图像二值化结果

可以看出,由于灰度值过于集中,二值化的结果不是十分理想,很多颗粒发生了粘连,导致下一步分值标号的结果误差较大。因此,首先要对超声图像进行边缘检测,经过各种方法的测试,发现对图像进行高斯拉普拉斯边缘检测时,可以看出颗粒被分割了出来。对此图像进一步二值化后计算颗粒个数,得到如下统计结果:

当然,随着计算机技术及更多算法的出现,其量化处理将会更加细致。

更多医疗电子信息请关注:21ic医疗电子

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

噪声频谱密度和信噪比是两种测量声音噪声的常用技术。噪声频谱密度是一种以频率为基础的技术,它可以帮助我们了解声音的特性,以及噪声的频率分布。信噪比是一种以信号强度为基础的技术,它可以帮助我们了解声音的强度,以及噪声的信号强...

关键字: 噪声 频谱

在现代电子系统中,电源噪声问题愈发凸显,严重影响着设备的性能与稳定性。从智能手机、笔记本电脑到工业控制设备、医疗仪器,各类电子设备都面临着电源噪声的挑战。例如,在医疗成像设备中,电源噪声可能导致图像出现干扰条纹,影响诊断...

关键字: 电源 噪声 干扰

EMI 滤波器,这一看似简单的电子元件,实则蕴含着高科技的智慧。它如同电子世界的 “清道夫”,主要应用于电源线和信号线上。其工作原理基于电感、电容等元件的巧妙组合,宛如一场精密的交响乐演奏。电感对高频信号呈现出高阻抗,如...

关键字: EMI 滤波器 噪声

在当今的电子设备设计领域,电源的高效性与稳定性始终是工程师们关注的核心要点。对于众多对噪声极为敏感的设备而言,找到一款既能提供高效动力支持,又能确保低噪声稳定运行的电源,无疑是整个设计过程中的关键环节。在这一探索过程中,...

关键字: 电源 噪声 滤波器

开关电源(SMPS)凭借高效、小型化的优势,广泛应用于电子设备中。但开关电源在工作时,因高频开关动作、元器件特性等因素,容易产生噪声。这些噪声不仅会影响自身性能,还可能干扰周边电子设备,因此准确测量开关电源中的噪声至关重...

关键字: 开关电源 噪声 测量

在电子设备的电源供应领域,如何实现高效且稳定的供电一直是工程师们不懈追求的目标。开关稳压器因其较高的效率在众多应用中得到广泛使用,然而,其固有的噪声问题却常常成为限制其进一步应用的瓶颈。尤其是在为对噪声极为敏感的设备,如...

关键字: 稳压器 噪声 滤波器

在现代电子系统中,对于电源稳定性和低噪声的要求日益严苛。低压差稳压器(LDO)作为一种关键的电源管理器件,广泛应用于为高速时钟、模数转换器(ADC)、数模转换器(DAC)、压控振荡器(VCO)和锁相环(PLL)等对电源噪...

关键字: 低压差稳压器 噪声 LDO

在弱信号模拟电路中,噪声是影响电路性能的关键因素。电路噪声可能导致信号失真、精度下降,甚至使电路无法正常工作。而供电方式的选择对弱信号模拟电路的噪声水平有着至关重要的影响。不同的供电方式会引入不同类型和程度的噪声,因此,...

关键字: 弱信号 模拟电路 噪声

在现代电子设备的蓬勃发展进程中,DCDC 开关电源凭借其效率高、体积小、成本低等显著优势,在通信、计算机、消费电子以及工业控制等众多领域获得了极为广泛的应用。然而,随着电子设备朝着高频化、集成化和小型化的方向不断迈进,D...

关键字: 开关电源 噪声 电磁兼容

在电子设备的电源系统中,电源滤波电路扮演着极为关键的角色。它能够有效去除电源中的各类噪声和纹波,为电子设备提供稳定、纯净的直流电源,保障设备的正常运行。然而,对电源滤波电路进行准确分析并非易事,需要关注多个重要问题。

关键字: 电源 滤波电路 噪声
关闭