当前位置:首页 > 显示光电 > 显示光电
[导读]文章介绍了一种光电互补LED 路灯控制器, 该控制器控制太阳能电池板对蓄电池组充放电,实时检测蓄电池容量,并用光电互补方式对负载供电。同时阐述了太阳能LED 路灯采用光电互补技术,既能提高可靠性,又能降低成本,

文章介绍了一种光电互补LED 路灯控制器, 该控制器控制太阳能电池板对蓄电池组充放电,实时检测蓄电池容量,并用光电互补方式对负载供电。同时阐述了太阳能LED 路灯采用光电互补技术,既能提高可靠性,又能降低成本,是目前解决太阳能LED 路灯照明的最佳选择,并根据LED路灯负载计算了蓄电池容量和太阳能电池板容量的匹配关系。

  引言
 

  光电互补LED 路灯照明系统就是以太阳能电池发电为主,以普通220V交流电补充电能为辅的路灯照明系统,采用此系统,光伏电池组和蓄电池容量可以设计得小一些,基本上是当天白天有阳光,当天就用太阳能发电同时给蓄电池充电,到天黑时蓄电池放电把负载LED 点亮。在我国大部分地区,全年基本上都有三分之二以上的晴朗天气,这样该系统全年就有三分之二以上的时间用太阳能照亮路灯,剩余时间用市电补充能量,既减小了太阳能光伏照明系统的一次性投资,又有着显着的节能减排效果,是太阳能LED路灯照明在现阶段推广和普及的有效方法。

  1 光电互补LED 照明系统设计

  1.1 LED 照明负载

  假设光电互补LED 路灯灯杆高度为10m,光照光通量大约25 lm,选用1W、3.3V、350mA 的LED 灯组成两路路灯,每一路14 串2 并共28W,两路为56W。设路灯每天平均照明10 小时,LED 路灯前5 小时全亮,后5 小时亮度减半,即电池消耗减少一半。

  所需实际驱动电流为:

  350mA×2×2=1.4A

  每天以10 小时计算,负载所需安时数为:

  1.4A×5h+1.4A×0.5×5h=10.5Ah

  电压为:

  3.3V×14=46.2V

  1.2 蓄电池组容量设计

  1.2.1 蓄电池的选用

  太阳能路灯用蓄电池由于频繁处于充电、放电循环中,而且会经常发生过充或深度放电等情况,因此蓄电池工作性能和循环寿命成为最受关注的问题。阀控式密闭型铅酸电池具有不需要维护、不向空气中排出氢气和酸雾、安全性好、价格低等优点,因而被广泛应用。蓄电池过充电、过放电以及蓄电池环境温度等都是影响蓄电池寿命的重要因素,所以在控制器中要重点采取保护措施。

  1.2.2 蓄电池组容量的计算

  在光电互补路灯系统中,是靠太阳能和市电互补对LED 路灯进行供电的。由于太阳光随天气变化差别很大,白天太阳光强时,太阳能电池板给蓄电池充电;晚上蓄电池给负载供电。阴天时,负载用电从蓄电池取得,当蓄电池放电电压降到最低允许限度时,自动转为市电补给。蓄电池的容量对保证可靠性供电很重要,电池容量过大导致成本价格升高,容量过小,又不能充分利用太阳能达到节能的目的。

  蓄电池容量Bc 计算公式:

  Bc = A×QL×NL×T0/CC Ah (1)

  式(1)中A 为安全系数,取1.1~1.4 之间,本式为A=1.2;QL 为负载日平均耗电量,为工作电流乘以日工作小时,QL=10.5Ah;NL 为最长连续阴雨天数,由于采用光电互补,故可以取NL=1 天;T0 为温度修正系数,一般在0℃以上为1.1,- 10℃以下取1.2,本式取T0=1.1;CC 为蓄电池放电深度,一般铅酸电池取0.75,碱性镍镉蓄电池取0.8,本式中CC =0.75。

  因此,Bc = A×QL×NL×T0/CC=1.2 ×10.5 ×1×1.1/0.75=18.5Ah,实际设计中,我们选用48V、40Ah 免维护阀控密封铅酸蓄电池。

  1.2.3 太阳能电池方阵设计

  太阳能电池组件以一定数目串联起来,可获得所需要的工作电压。但是太阳能电池的串联必须适当,串联数太少,串联电压低于蓄电池浮充电压,太阳能电池组方阵就不能对蓄电池充电;若串联数太多,使输出电压远高于浮充电压时,充电电流也不会有明显增加。因此,只有当太阳能电池组件串联电压等于合适充电电压时,才能达到最佳状态。

  太阳能电池组的输出电压一般取蓄电池电压的1.2~1.5 倍,当取1.35 倍时,蓄电池电压为48V×1.35=64.8V,此处取65V。

  若当天无太阳光时,蓄电池晚上给负载放电容量为:

  Bcb = A×QL×NL = 1.2×10.5×1 = 12.6Ah

  郑州地区按5 小时太阳光给蓄电池充电,电流为:

  I = 12.6Ah/5h = 2.52A

  所以太阳能电池方阵功率为:

  P = UI = 65V×2.52A = 163.8W

  实际可采用4 块36V 48W 太阳能电池板,共192W,分两组,每组2 块串联,电压为72V。

  2 控制器及工作原理简介

  2.1 光电互补LED 路灯控制器系统结构

  光电互补LED 路灯控制系统结构框图如图1所示,本系统中关键部件是控制器,控制器的功能主要有:

  (1)白天对太阳能电池板的电压和电流进行检测,通过MPPT 算法追踪太阳能电池板最大输出功率点,使太阳能电池板以最大输出功率给蓄电池充电,并控制太阳能电池对蓄电池进行充电的方式;(2)控制光电互补自动转换,晚上控制蓄电池放电,驱动LED 负载照明;当在太阳光照不足或阴雨天气,蓄电池放电电压达最低电压时,能自动切换到市电供LED 路灯点亮;(3)对蓄电池实行过放电保护、过充电保护、短路保护、反接保护和极性保护;(4)控制LED 灯的开关,通过对外环境监测,可以控制LED 灯开灯、关灯时间。

  


2.2 充电电路及输出控制

 

 

  2.2.1 充电电路

  充电电路用来调节充电电流与电压,使太阳能电池板稳定地对蓄电池充电。由于每天在各个时段太阳能电池板所转换的太阳辐射能不同,使得太阳能电池输出的电流和电压各不相同,这就需要通过必要的充电电路来控制。本电路就是用TL494 实现的电压型脉宽调制(PWM)控制电路,电路图如图2所示。

  

 

  当R12 所接的单片机给4 脚一个高电平时,TL494 的截止时间增大到100% ,TL494 不工作,这样就可以通过4 脚输入的电平高低决定是否对蓄电池充电。TL494 的12 脚接电源,14 脚输出的5V基准电压供单片机使用,同时R5、R6 的分压作为TL494 中误差放大器1 的同相端(2 脚)恒压充电时的参考电压信号,电池正极电压经R2、R3 分压作为误差放大器1 的反相端(1 脚)输入恒压充电的给定电压信号,两者之间的偏差作为恒压调压器使用。2脚和3 脚间引入阻容元件,校正改善误差放大器的频响。系统工作时,实时检测太阳能电池板的输出电压、蓄电池的电压,并根据各个电压值的不同状况,控制太阳能电池对蓄电池充电与否,并根据设定的路灯时控或光控方式,控制LED 路灯是否点亮,以及点亮时供电方式在蓄电池和市电之间的合理切换。TL494 主要在单片机程序控制下完成对蓄电池、太阳能电池板的检测以及充放电控制。

  路灯的照明时间可以依据H1~H4 上的直拨开关进行设置,每档对应时间为1 小时、2 小时、4 小时、8 小时,这样就可以通过不同的组合在1~15 小时内作调整。系统软件的控制流程图如图3 所示。

  

 

  在工作过程中,单片机会一直检测太阳能电池和蓄电池的电压,当太阳能电池的输出电压高于蓄电池2V以上,同时蓄电池的电量没满,单片机的11脚输出低电平,芯片TL494 开始工作,通过MOS 管Q1 对蓄电池充电。当充满后,转入浮充状态,对蓄电池的自放电情况进行电量补偿。对蓄电池的充电,开始是大电流恒流充电状态,充电电流为Imax。当蓄电池的电压达到52.8V时,充电器处于恒压充电状态,充电电流持续下降,当电流下降到250mA 并且蓄电池的电压上升到56.4V左右不变时,蓄电池的电量已达额定容量的100%,电路进入浮充阶段,给电池提供的浮充电压抵消了蓄电池的自放电。当蓄电池的电压达到57.6±0.2V,蓄电池达到过充电压点,单片机的11 脚输出高电平,芯片TL494 结束工作,蓄电池充电结束。

  3 结论

  通过对光电互补LED 路灯系统设计和实际测试观察,其结果基本符合设计要求,但必须经过实际长期运行,不断完善设计,才能达到太阳能有效利用、蓄电池容量匹配最合理、成本降到最低、性能价格比最好。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

业内最新消息,据 Business Insider 报道,德国大举发展太阳能,使得发电量激增,超过了消费需求,导致电价暴跌,甚至跌到了负值,形成了一个奇幻的能源市场,消费者使用电力反而可以获得报酬。

关键字: 太阳能

近年来,太阳能等可再生能源的应用显著增长。推动这一发展的因素包括政府的激励措施、技术进步以及系统成本降低。虽然光伏(PV)系统比以往任何时候都更加合理,但仍然存在一个主要障碍,即我们最需要能源时,太阳能并不产生能源。清晨...

关键字: 拓扑结构 电池储能系统 太阳能

随着电力行业的不断发展和进步,为了符合节能减排的社会发展趋势,发电系统逐渐采用可再生的新能源发电代替传统的发电模式。

关键字: 太阳能 逆变器 电力

光伏发电是根据光生伏特效应原理,利用太阳能电池将光能直接转化为电能。不管是离网发电还是并网发电,光伏发电系统主要是由光伏组件、光伏逆变器、控制柜、电缆、四大部分组成。

关键字: 太阳能 光伏 发电系统

太阳能逆变器作为太阳能光伏发电系统中的核心设备,负责将光伏组件产生的直流电转换为交流电,以供家庭、企业等用电设备使用。然而,在某些特定情况下,我们需要将太阳能逆变器设置为离线状态,以进行维护、检修或系统升级等操作。本文将...

关键字: 太阳能逆变器 太阳能

Alat 埃耐特和大华技术股份投资 2 亿美元建立以视觉为中心的全球产品业务,并在沙特阿拉伯建立先进的制造工厂

关键字: AIoT 人工智能 太阳能

太阳能逆变器是太阳能发电系统中不可或缺的一部分,其主要功能是将太阳能电池板产生的直流电转换为家用电器使用的交流电。通过全桥电路和SPWM处理器,逆变器可以将直流电转换为与照明负载频率和额定电压相匹配的正弦交流电,供系统终...

关键字: 太阳能 逆变器

【2023年11月29日,德国慕尼黑讯】英飞凌科技股份公司(FSE代码:IFX / OTCQX代码:IFNNY)近日宣布其CoolSiC 1200 V和2000 V MOSFET模块系列新添全新工业标准封装产品。其采用成...

关键字: 碳化硅 电动汽车充电桩 太阳能

北京——2023年11月15日——亚马逊宣布今年已投资78个全新的太阳能和风能项目,其中包括在美国马里兰州受到污染的废弃煤矿旧址改造成太阳能发电场的项目、在美国德克萨斯州推出的10个新的可再生能源项目、在中国新增的两个可...

关键字: 可再生能源 清洁能源 太阳能
关闭
关闭