当前位置:首页 > 测试测量 > 测试测量
[导读]数据采集与转换系统用于将模拟信号转换为数字形式进行分析或传输。模拟信号输入通常是由互感器和传感器将压力、温度、应力或张力、流量等真实信号转换为相应的电信号。系统保存信号准确性和完整性的能力是衡量系统的

数据采集与转换系统用于将模拟信号转换为数字形式进行分析或传输。模拟信号输入通常是由互感器和传感器将压力、温度、应力或张力、流量等真实信号转换为相应的电信号。系统保存信号准确性和完整性的能力是衡量系统的主要指标。如何设计一个高性能的数据采集与转换系统需要考虑多方面的因素,本文就其中的一些关键问题给出自己的讨论。

数据采集转换系统的基本框架

模拟信号进行采集并转换为相应数字形式所需的基本元素包括:模拟多路复用器和信号调节;放大器;模数转换器;PC 或 MCU。

图1 为数据采集系统典型框图。目前的数据采集系统通常包括数据采集与转换所需的所有元素,不过有时可能不包含模拟多路复用之前的输入滤波与信号调节。模拟信号由模拟乘法器进行时间多路复用;多路复用器输出信号通过放大器输入A/D转换器。我们可对采样/保持进行编程,以便采集并保持经各 A/D 转换器转换成的数字多路数据采样。转换后的数据以并行或串行形式出现在 A/D 转换器的输出中,以备终端设备做进一步处理。

图1

系统采样率

被转换数据的应用与最终使用决定了数据采集与转换系统所需的采样率和转换率。系统采样率由最高带宽通道、数据通道的数量以及每次循环的采样数决定。

图2

混叠误差

根据奈奎斯特采样定理,在理想的采样数据系统中,数据带宽的每次循环要求最少两次采样,这样恢复被采样信号才不会丢失信息。因此,确定系统采样率时首先要考虑的就是混叠误差,也就是由于在信号频率的每次循环中采样数量不足所造成的信息丢失。图2 显示了在数据带宽的每次循环中采样数量不足所造成的混叠误差。

每次循环需要多少个采样

这个问题的答案取决于允许的平均误差容限、重建方法(如果存在)以及数据的最终使用。

采样数据的平均精度可通过以下途径加以改进:(1)增加每次循环的采样数;(2) 多路复用前预采样滤波,或 (3) 过滤 D/A 转换器输出。图3显示了采样数据的重建,这里 fS= 2fMAX。

如图 4所示,每次循环采样数只要稍许增加,采样数据的平均精度就会大幅上升。理论限制在于持续采样时采集与转换系统的吞吐量精度。对于数据的零阶重建,从图4 可以看出,重建采样数据达到平均 90% 乃至更高的精度要求对数据带宽的每次循环进行10次采样。通常所用的范围是每次循环7~10次采样。

图3

图4

采样误差

采样误差的定义是:采样过程中动态数据变化的不确定性所造成的采样数据点的幅值与时间误差。在数据采集和转换系统中,通过使用采样/保持器或快速的A/D转换器,就能减小采样误差或使之不显著。对于正弦数据,最大采样误差出现在零交叉情况下,这时会出现最大的 dv/dt。

关于 A/D 转换器的几点说明

A/D转换器的转换速度和分辨率是最重要的两个参数。下面简单讨论一下 A/D 转换器术语将有助于读者更好地了解系统分辨率与精度。

速度:主要由A/D 转换器的采样时间及转换时间构成。A/D转换器手册均会在采样动态参数 (Sampling Dynamics)标出转换速度。有时是数据吞吐率(Throughput Rate)。逐次逼近型AD转换器采样速率或数据吞吐率一般从几十千次每秒到几兆次每秒。

分辨率:A/D 转换器的比特数决定着数据采集系统的分辨率。A/D 转换器分辨率的定义如下:---1 LSB = VFSR/2n,

LSB = 最低有效位,VFSR =满量程输入电压范围,这里,n为A/D转换器的分辨率。比特数决定着数字码的数量,对A/D转换器而言有2n个离散数字代码。就本文的讨论而言,我们将使用二进制逐次逼近A/D转换器。表1显示了典型A/D转换器的分辨率和LSB的值。

表1

信噪比:理想AD转换器的信噪比为SNRdB=6.02×n-1.76,表2 为AD 转换器位数与信噪比的简单对照表。

表2

精度:假定所有模拟值都位于 A/D转换器输入处。A/D 转换器量化或编码特定的模拟输入值为相应的数字代码作为一种输出。上述数字代码有着内在的不确定性或 ±1/2LSB的量化误差。这就是说,量化的数字代码所代表的模拟电压与相邻数字代码中间点的距离在 ±1/2LSB之内。A/D转换器的精度不会超过内在的 ±1/2LSB 的量化误差所允许的范畴。增益、偏移和线性误差等模拟误差也会影响 A/D转换器的精度。增益和偏移通常可调节为零,但线性误差是不可调的,因为它是由固定值的梯形电阻器网络和网络开关匹配造成的。大多数高质量A/D转换器的线性误差都低于±1/2LSB。另一个需要重点考虑的误差是微分线性误差。在理想的A/D 转换器中,相邻过渡点间的步进大小为一个 LSB。微分线性误差就是在实际 A/D 转换器中相邻过渡点与理想的 LSB步进差距。该误差必须小于一个 LSB,这样才能保证不会丢失代码。线性误差为 ±1/2LSB 的 A/D转换器不一定意味着不会丢失代码。图5为微分线性、失调及增益误差图。

图5

二进制代码:二进制编码的数据格式是数字计算机类型应用中最常见的,其处理通常以二进制形式进行。A/D 转换器中最常用的二进制编码为:

1. 单极标准二进制(USB)——用0~±10V等。

2. 双极偏移二进制(BOB)——用于双极模拟信号范围,如 ±5V、±10V 等

3. 双极双组件(BTC)——用于许多数字计算机应用中的双极模拟信号范围。

在 A/D 转换器中使用两种 BCD编码,单极 BCD 和符号数值 BCD (SMD)。
 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

构建了机载电源特性测试系统 , 包括硬件平台和软件平台:硬件平台用于产生电源特性测试所需激励信号 , 软件 平台实现电源特性测试架构的 自动切换和电源特性的数据采集;硬件平台由APS15000线性功放 、LVA2500线...

关键字: 电源特性测试 测试切换 数据采集 自动控制

北京亦庄启动具身智能社会实验计划 北京2025年8月9日 /美通社/ -- 2025世界机器人大会正在北京经济技术开发区(简称北京经开区,也称北京亦庄)举行。在8月9日的2025世界机器人大会"产业发展&qu...

关键字: 智能机器人 数据采集 软硬件 零部件

北京亦庄发布"具身智能机器人十条" 北京2025年8月9日 /美通社/ -- 8月9日,在2025世界机器人大会"产业发展"主论坛上,北京经济技术开发区发布具身智能社会实验计划,...

关键字: 智能机器人 数据采集 供应链 零部件

在电动汽车中,电池组的性能与安全性直接关系到车辆的运行状况和驾乘人员的生命安全。数据采集卡在此发挥着持续记录电池组电流、电压、温度等关键参数的作用。以特斯拉电动汽车为例,其电池管理系统中运用了高精度的数据采集卡,能够以毫...

关键字: 电池组 管理系统 数据采集

在多路遥测系统中,TLV2548 作为一款常用的 12 位串行模数转换器,因其具备多通道、高速、低功耗等特性,被广泛应用于各类数据采集场景。然而,在实际应用过程中,TLV2548 多路遥测常受到多种干扰问题的困扰,这些干...

关键字: TLV2548 遥测 数据采集

数字时代改变了解决问题的范式,将智能引入边缘可以应对全新的复杂挑战。数据采集(DAQ)系统成为了边缘智能的核心。在数据采集领域,准确度和可靠性至关重要。为确保达到高准确度和完整性,隔离式精密信号链的重要性不容忽视。

关键字: 信号链 边缘智能 数据采集

在电子设备的复杂电路体系里,电容器扮演着电荷存储与释放的关键角色。钽电容,作为电容器家族中的重要一员,凭借其体积小、容量大、稳定性高以及寿命长等突出特性,在众多电子设备中得到广泛应用。而当涉及到钽电容的精度时,不同精度的...

关键字: 电容器 钽电容 精度

对于初次尝试评估惯性检测解决方案的人来说,现有的计算和I/O资源可能会限制数据速率和同步功能,进而难以在现场合适地评估传感器能力。常见的挑战包括如何以MEMS IMU所需的数据速率进行时间同步的数据采集,从而充分发挥其性...

关键字: MEMS 传感器 数据采集

根据国网四川省《关于开展并网电厂PMU装置布点建设和信息完善工作的通知》要求 ,DXG水电站完成了CSD-361同步相量测量装置(PMU)的安装 ,按冗余配置方式通过一、二平面接入省调电力系统实时动态监测系统(WAMS)...

关键字: 同步相量测量 PMU 电力系统动态监测 数据采集

在现代科学研究与工业生产的众多领域,如生物医学检测、环境监测、精密仪器制造等,常常需要对微弱传感器信号(mV 级别)进行精确采集与分析。然而,这类微弱信号极易受到各种干扰源的影响,导致采集到的信号失真,无法准确反映被测量...

关键字: 传感器 信号 精度
关闭