当前位置:首页 > 测试测量 > 测试测量
[导读] 石英晶体振荡器是一种用于稳定频率和选择频率的重要电子元件,也简称为“晶振”。由于石英晶体振荡器具有体积小、重量轻、可靠性高、具有很高的频率稳定性和良好的温度特性,因此被广泛应用于通信、广播、

 石英晶体振荡器是一种用于稳定频率和选择频率的重要电子元件,也简称为“晶振”。由于石英晶体振荡器具有体积小、重量轻、可靠性高、具有很高的频率稳定性和良好的温度特性,因此被广泛应用于通信、广播、导航、电子对抗及精密测量仪器中。目前,大多数测试人员对晶体振荡器的测量还采用手工测试。无论在初测、老化测试还是终测中,测试人员需要先连接好测试电路,然后将晶体振荡器放入夹具,打开稳压电源并不断地调整示波器显示的波形,在各项指标都满足后开始从频率计中读取数据并手工记录。有时为了得到稳定精确的数据,还要等待一段时间再读数,可见操作步骤十分繁琐,并且容易造成人为误差。为了简化测试工作,提高工作效率及提高测试数据的可靠性,本文介绍的是一种在LabView虚拟仪器平台上开发的晶体振荡器测试系统,该系统可以实现自动协调测量仪器,自动数据采集并处理,自动生成电子表格等功能,具有高度的灵活性、可靠性及可操作性。

1 系统总体概述

该系统是在LabVIEW虚拟仪器平台上开发的晶体振荡器测试系统,它可以测量晶体振荡器的输出频率、高电平、低电平、上升时间和下降时间,可以观测输出波形并计算频率精度。它还可以自动记录数据,具有友好的人机操作界面。

系统将各个测试仪器连接在一起,通过PC端下达指令来操控各个部分协调工作,该系统的工作流程如图1所示。

2 设计方案

该设计由两部分组成,即硬件部分和软件部分。硬件部分主要由具有程控功能的直流稳压电源、示波器、频率计构成,软件部分则为在LabVIEW平台上开发的控制程序及操作界面。下面将对各部分进行详细说明。

2.1 硬件工作原理

该系统利用计算机通过GPIB标准串行接口连接Agilent6054A示波器、Agilent 3031A稳压电源和Pendulum CNT90频率计,控制每个设备工作并从中读取数据。系统硬件连接图如图2所示。

晶体振荡器则放在专用夹具上,这里以表面贴装晶体振荡器为例,夹具引脚图如图3所示,1号引脚为空引脚,作为参考点,2号引脚为接地引脚,3号引脚为输出引脚,连接示波器和频率计,4号引脚为供电引脚,接稳压电源。

2.2 软件设计

本设计的软件部分主要基于NI公司的LabVIEW平台开发的,LabVIEW是通过图形编译(Craphics,G)语言来编写程序的,程序类似流程图,这为编程人员提供了一个直观的编程环境。它可以充分发挥计算机的能力,具有强大的数据处理功能,用户可以根据自己的需要来创造并模拟出各种仪器。

在LabVIEW中,VISA称为虚拟仪器软件体系结构(Virtual Instrument Software Architecture),作为LabVIEW程序中驱动程序间相互通信的底层功能模块,可以连接不同标准的I/O设备,是一个用来在串口通信设备、VXI设备、GPIB设备以及其它基于计算机设备之间通信的函数库。在本次设计中,所选用的三种型号的仪器在LabVIEW中的Instrume nt Drivers选项卡中都可以安装已经开发好的驱动模块,这样就简化了驱动开发的过程。

2.2.1 图形功能界面设计

利用LabVIEW的图形操作界面设计功能,为该系统设计了一个友好的人机操作界面,如图4所示。

1)参数设置部分,其中包括:频率精度判限、重测频率精度判限、电源电压、钳位电流、标称频率。其中频率精度判限用来判断频率精度是否超出范围;电源电压是设置晶体振荡器的供电电压;钳位电流是限制最大电流的参数;标称频率为晶体振荡器的标准频率。

2)路径设置,为数据存储提供存储位置。

3)波形示意图,可读取示波器信号,供测试人员分析波形。

4)输出结果部分,该部分包括:测试频率、最高电平、最低电平、上升时间和下降时间。可扩展其他数据结果。

5)控制部分,该部分包含两个按钮,“测试”和“重测”,还有一个超范围指示灯,用来提醒是否超出范围,由测试人员决定是否进行重测。

6)数据记录窗口。在该窗口中,会横向显示每个晶振的五种测试数据,在第一列会为每次测量的晶振自动编号,重测不计入其中,方便测试人员核对数量。

2.2.2 DC稳压电源控制模块

在该设计中,分别为DC稳压电源、示波器、频率计设计了3个控制模块的子VI,用来单独调用。其中电源控制模块的程序如图5所示。电源模块只需要输入两个参数,分别是“电源输出电压”和“钳位电流”。从程序中可以看到,安装的驱动中已经集成了驱动和设置的模块,例如“HPE363Xa Initialize.vi”,“HPE363Xa close.vi”,“HPE363 1a getting started.vi”等,这些模块可以在程序中直接调用,只需设置所需的参数即可。如果模块中没有预留所需功能的连线端,只需重新引出即可,极大地简化了开发的过程,其他设备的编程也类似。

2.2.3 示波器控制模块

示波器控制部分的程序如图6所示。这里调用的模块主要有:“ag6000a Initialize.vi”,用于初始化设备的各种参数;“ag6000a Autosetup.vi”,用于将示波器设置为自动读取模式;“ag6000a Read Single Waveform.vi”,用于读取示波器采集到的波形;“ag6000a Read Waveform Measurement.vi”,用于读取波形中所包含的数据。该部分主要功能是控制示波器输出“最高电平”、“最低电平”、“上升时间”和“下降时间”4种参数并读取示波器的波形。在这里也设置了超时参数,如果5秒内没有控制信号传输进来,程序将由于超时自动终止。

2.2.4 频率计控制模块

频率计控制部分的程序设置如图7所示。图中用到的模块的功能与上一部分类似,其中“pecnt90 Configure Measurement.vi”,模块可以设置仪器测量时的各种参数,在测试类型一项应该选择“频率(Frequency)”,该模块也可修改采样时间等参数。该部分的主要功能是控制频率计采集晶体振荡器的频率并将其输出。同样地,这里也设置了5秒超时功能。

由于系统在为晶体振荡器加电时,电压瞬间达到设定值,为了避免瞬间电压不稳定对测试结果造成影响,特别在这里添加了延时1秒读数的设计,使系统在晶体振荡器稳定工作后,才开始读数。延时部分程序如图8所示。

3 实际测试与数据分析

为了验证系统测试的可靠性,进行了大量的实际测试。通过实际测试,对系统做出了诸多改进。该系统具有如下优点:

1)速度快

在实际测试中,我们对比了手动测试和系统自动测试所花费的时间。正常情况下,手动测试1个晶体振荡器平均需要1分钟,在进行批量测试时,必然会耗费大量时间和精力。而使用该系统进行测试,平均测试一个晶体振荡器的时间为5秒,节省了90%的时间,这是因为自动测试节省了人工观察、记录示波器数据和等待频率计读数稳定的时间,也节省了计算数据的时间。

2)精度高

人工测试时,由于测试频率一直在细微地变化,导致测试人员在记录数据时晶体振荡器的各项数据已经发生变化,这就使得各项测试结果不匹配,导致计算时产生误差。而该系统由于使用计算机控制,各个设备协调工作,处理速度非常快,读数准确,不会出现上述情况,这就大大提升了测试的精度。此外该系统计算的数据精确度非常高,读数精确到小数点后六位,实际测试中,例如计算频率精度,计算公式为:

计算结果的单位为ppm,由公式可知:该计算结果精确到百万分之一。在手工测试的条件下,例如一种精度要求在1 ppm以内的晶体振荡器,通常计算结果为20 ppm以上,计算准确性非常低,而该系统计算结果全部在要求范围内。测试结果如表1所示。

3)可靠性强

为了检验可靠性,我们特别对同一批晶体振荡器进行了10次测试,每次测试间隔10分钟以上,实验结果表明,每次试验结果的偏差都不超过0.00001%。此外,使用该系统连续测试200个已检验合格的晶体振荡器,并保持系统持续工作5小时,没有发现任何异常,可见该系统的可靠性非常强。

4 结束语

晶体振荡器的测试技术在电子工业领域是非常实用的。传统的手工测试、人工记录已经满足不了更高的生产效率。该系统可以很好地解决这一问题,并具备高精度、高速度等特点,可以满足正常的测量需求,达到了自动化测试的目的。该系统也具备一定的扩展性,例如可以连接多个测试通道,让系统自动切换通道进行测试等。本文对其他自动化测试系统的开发也具有一定参考价值。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

构建了机载电源特性测试系统 , 包括硬件平台和软件平台:硬件平台用于产生电源特性测试所需激励信号 , 软件 平台实现电源特性测试架构的 自动切换和电源特性的数据采集;硬件平台由APS15000线性功放 、LVA2500线...

关键字: 电源特性测试 测试切换 数据采集 自动控制

北京亦庄启动具身智能社会实验计划 北京2025年8月9日 /美通社/ -- 2025世界机器人大会正在北京经济技术开发区(简称北京经开区,也称北京亦庄)举行。在8月9日的2025世界机器人大会"产业发展&qu...

关键字: 智能机器人 数据采集 软硬件 零部件

北京亦庄发布"具身智能机器人十条" 北京2025年8月9日 /美通社/ -- 8月9日,在2025世界机器人大会"产业发展"主论坛上,北京经济技术开发区发布具身智能社会实验计划,...

关键字: 智能机器人 数据采集 供应链 零部件

在电动汽车中,电池组的性能与安全性直接关系到车辆的运行状况和驾乘人员的生命安全。数据采集卡在此发挥着持续记录电池组电流、电压、温度等关键参数的作用。以特斯拉电动汽车为例,其电池管理系统中运用了高精度的数据采集卡,能够以毫...

关键字: 电池组 管理系统 数据采集

在多路遥测系统中,TLV2548 作为一款常用的 12 位串行模数转换器,因其具备多通道、高速、低功耗等特性,被广泛应用于各类数据采集场景。然而,在实际应用过程中,TLV2548 多路遥测常受到多种干扰问题的困扰,这些干...

关键字: TLV2548 遥测 数据采集

数字时代改变了解决问题的范式,将智能引入边缘可以应对全新的复杂挑战。数据采集(DAQ)系统成为了边缘智能的核心。在数据采集领域,准确度和可靠性至关重要。为确保达到高准确度和完整性,隔离式精密信号链的重要性不容忽视。

关键字: 信号链 边缘智能 数据采集

下面的项目包括一个机器人完成各种任务。这是通过在机器人上使用和实现各种传感器来完成的。机器人能够在一个封闭的区域内移动,收集球,并在最后的一个点上放下球。机器人将绘制出它去过的位置和该区域内的障碍物。

关键字: 传感器 机器人 LabVIEW

为增进大家对晶振的认识,本文将对温度对晶振频率的影响以及使用晶振时需要注意的事项予以介绍。

关键字: 晶振 指数 晶体振荡器

对于初次尝试评估惯性检测解决方案的人来说,现有的计算和I/O资源可能会限制数据速率和同步功能,进而难以在现场合适地评估传感器能力。常见的挑战包括如何以MEMS IMU所需的数据速率进行时间同步的数据采集,从而充分发挥其性...

关键字: MEMS 传感器 数据采集

根据国网四川省《关于开展并网电厂PMU装置布点建设和信息完善工作的通知》要求 ,DXG水电站完成了CSD-361同步相量测量装置(PMU)的安装 ,按冗余配置方式通过一、二平面接入省调电力系统实时动态监测系统(WAMS)...

关键字: 同步相量测量 PMU 电力系统动态监测 数据采集
关闭