当前位置:首页 > 单片机 > 单片机
[导读]pic单片机是这个时代的宠儿,而在往期pic单片机相关文章中,小编曾对pic单片机的I/O接口进行过阐述,但I/O并非pic单片机内部硬件资源的全部内容。因此在本文中,将对pic单片机的各种内部硬件资源加以介绍,以帮助大家全面掌握pic单片机打下夯实基础。

pic单片机是这个时代的宠儿,而在往期pic单片机相关文章中,小编曾对pic单片机的I/O接口进行过阐述,但I/O并非pic单片机内部硬件资源的全部内容。因此在本文中,将对pic单片机的各种内部硬件资源加以介绍,以帮助大家全面掌握pic单片机打下夯实基础。

数据存储器在单片机PIC16F84中,除了有存放程序的程序存储器外,还有数据存储器。单片机在执行程序过程中,往往需要随时向单片机输入一些数据,而且有些数据还可能随时改变。在这种情况下就需用数据存储器。由于数据存储器不但要能随时读取存放在其各个单元内的数据,而且还需随时写进新的数据,或改写原来的数据。因此,数据存储器需由随机存储器RAM构成。RAM存储器在断电时,所存数据随即丢失,这在实际应用中有时会带来不便。但是,在16F84单片机中有64×8位E2PROM数据存储器。存放在E2PROM中的数据在断电时不会丢失。

16F84单片机中的RAM数据存储器如表1所示,该RAM分为两个存储体:即存储体0(Bank0)和存储体1(Bank1)。每个存储体均可以直接用内部总线传送信息,所以它们都是以寄存器方式工作和寻址。这些八位寄存器,又可分为通用寄存器和专用寄存器两个部分。通用寄存器存放数据,专用寄存器存放控制单片机运作的信息。每个存储体最大可扩展到7FH(128个字节)。在每个存储体中,专用寄存器被安排在低位地址空间,通用寄存器被安排在高位地址空间。

通用寄存器用法单一,但专用寄存器却各有各的用处,现将较基本的专用寄存器作一简单介绍。

(1)程序计数器(PCL、PCLATH)。程序计数器PC是对程序进行管理的计数器。PIC16F84的程序计数器为13位宽,最大可寻址的存储空间为8k×14位。实际上16F84只使用前1k×14位(0000~03FFH)存储空间。因程序计数器有13位宽,而专用寄存器只有8位。因此PC由两个专用寄存器构成。其低八位PCL是一个可读/写寄存器(地址为02H或82H),而高字节PCH(有效位5位)不能直接进行读/写操作,它是通过一个8位的保持寄存器PCLATH(地址为0A或8AH)把高5位地址传送给程序计数器的高字节。当执行CALL、GOTO指写PCL时,PC值的高字节就从PCLATH寄存器中装入。

(2)状态寄存器STATUS。状态寄存器STATUS含有算术逻辑单元ALU运算结果的状态(如有无进位等)、复位状态及数据存储体选择位。有关位位的设定如表2所示,功能如下:

1)第0位。进位/借位位C。执行加、减运算指令表2IRP RP1 RP0 TO PD Z DC C后,若结果有进位或借位,则C被置1,否则置0。在执行移位指令时,也要用到这一位。

2)第1位。辅助进位/借位位DC。执行加、减运算指令后,若结果的低四位向高四位有进位或借位,则DC置1,否则置0。

3)第2位。零标志位运算结果为零,Z被置1;运算结果不为零,Z被清零。

4)第3位。低功耗标志位PD。上电复位或执行CLRWDT指令后置1,执行SLEEP指令后被清零。

5)第4位。定时时间到标志位TO。上电复位或执行CLRWDT、SLEEP指令后被置1,监视定时器的定时时间到被清零。

6)第5位和第6位(RP0、RP1)。这两位是用于直接寻址时的寄存器体选择位。即00——选中Bank0(00H~7FH);01——选中Bank1(80H~FFH),16F84只有两个存储体。故10、11不用。

7)第7位IRP。这是间接寻址的寄存体选择位。0——选中Bank0、1(00H~FFH),1——选中Bank2、3。16F84只有Bank0、1,所以此IRP位应被置为0。

(3)间接寻址INDF和FSR寄存器INDF寄存器不是一个物理寄存器,而是一个逻辑功能的寄存器(地址为00H或80H),当对INDF寄存器进行寻址时,实际上是访问FSR寄存器内容所指的单元,即把FSR寄存器作为间接寄存器使用。FSR称为“寄存器选择”寄存器,地址为(04H或84H)。对INDF寄存器本身进行间接寻址访问,将读出FSR寄存器的内容,例如当FSR=00H时,间接寻址读出INDF的数据将为00H。用间接寻址方式写入INDF寄存器时,虽然写入操作可能会影响STATUS中的状态字,但写入的数据是无效的。

以上便是小编此次为大家带来的“pic单片机”相关内容,希望大家通过本文可对pic单片机的内部硬件资源有所了解。最后,十分感谢大家的阅读,have a nice day!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭